1. найдите меньший угол равнобедренной трапеции abcd, если диагональ ac образует с основанием вс и боковой стороной cd углы, равные 30° и 105° соответственно. 309 -- 10 5
ПРИЗНАК ПРЯМОУГОЛЬНИКА Параллелограмм является прямоугольником, если выполняется любое из условий: Если диагонали параллелограмма равны. Если квадрат диагонали параллелограмма равен сумме квадратов смежных сторон. Если углы параллелограмма равны.Основные свойства прямоугольника
Противоположные стороны прямоугольника имеют одинаковую длину, то есть они равны: ...
Противоположные стороны прямоугольника параллельны: ...
Прилегающие стороны прямоугольника всегда перпендикулярны: ...
ПРИЗНАК ПРЯМОУГОЛЬНИКА Параллелограмм является прямоугольником, если выполняется любое из условий: Если диагонали параллелограмма равны. Если квадрат диагонали параллелограмма равен сумме квадратов смежных сторон. Если углы параллелограмма равны.Основные свойства прямоугольника
Противоположные стороны прямоугольника имеют одинаковую длину, то есть они равны: ...
Противоположные стороны прямоугольника параллельны: ...
Прилегающие стороны прямоугольника всегда перпендикулярны: ...
Все четыре угла прямоугольника прямые: ...
Сумма углов прямоугольника равна 360 градусов:
Продлим РА за точку А и СВ за точку В, точку пересечения назовём О.
∆РОС – прямоугольный с прямым углом Р.
Сумма острых углов прямоугольного треугольника равна 90°. Исходя из этого: угол РОС=90°–угол ОСР=90°–45°=45°.
Получим что угол РОС=угол ОСР, тогда ∆РОС – равнобедренный с основанием ОВ.
Тогда РО=РС=9,2 см.
Основания трапеции параллельны, тоесть АВ//РС.
Следовательно: угол ОВА=угол ОСР как соответственные при параллельных прямых АВ и РС и секущей ОС; тогда угол ОВА=45°.
Угол АОВ=45° (доказано ранее)
Получим что угол ОВА=угол АОВ.
Тогда ∆АОВ – равнобедренный с основанием ОВ. Следовательно АО=АВ=2,6 см.
РА=РО–АО=9,2–2,6=6,6 см.
ответ: 6,6 см.