Свойство треугольника: Любая сторона треугольника меньше суммы двух других сторон и больше их разности: ( a < b + c,.. a > b – c;.. b < a + c,.. b > a – c; .. c < a + b,.. c > a – b )
Одна из сторон треугольника в два раза больше другой означает, что основание в этом треугольнике является меньшей стороной. В противном случае длина основания была бы равна сумме боковых сторон, и такой треугольник получится "вырожденным". Пусть основание равно х, тогда каждая боковая сторона 2х Периметр равен 2х+2х+х=5х х=55:5=11 см. ( основание) 11*2=22 см - каждая боковая сторона.
Если двугранные углы при ребрах основания равны (равны углы наклона боковых граней к плоскости основания), то высота пирамиды проецируется в центр окружности, вписанной в основание. В ромбе это точка пересечения диагоналей (точка О на рисунке).
Проведем ОН⊥CD. ОН - проекция наклонной SH на плоскость основания, тогда SH⊥CD по теореме о трех перпендикулярах. Значит
Любая сторона треугольника меньше суммы двух других сторон и больше их разности:
( a < b + c,.. a > b – c;.. b < a + c,.. b > a – c; .. c < a + b,.. c > a – b )
Одна из сторон треугольника в два раза больше другой означает, что основание в этом треугольнике является меньшей стороной. В противном случае длина основания была бы равна сумме боковых сторон, и такой треугольник получится "вырожденным".
Пусть основание равно х, тогда каждая боковая сторона 2х
Периметр равен 2х+2х+х=5х
х=55:5=11 см. ( основание)
11*2=22 см - каждая боковая сторона.
Если двугранные углы при ребрах основания равны (равны углы наклона боковых граней к плоскости основания), то высота пирамиды проецируется в центр окружности, вписанной в основание. В ромбе это точка пересечения диагоналей (точка О на рисунке).
Проведем ОН⊥CD. ОН - проекция наклонной SH на плоскость основания, тогда SH⊥CD по теореме о трех перпендикулярах. Значит
∠SHO = 60° - линейный угол двугранного угла при ребре основания.
Периметр ромба 40 см, значит длина одной стороны ромба
CD = Pabcd/4 = 10 см.
КН - высота ромба.
Sabcd = CD · KH
KH = Sabcd / CD = 60 / 10 = 6 см
ОН = 1/2 КН = 3 см.
ΔSOH: ∠SOH = 90°,
SO = OH · tg∠SOH = 3 · √3 = 3√3 см
Объем пирамиды:
V = 1/3 Sabcd · SO = 1/3 · 60 · 3√3 = 60√3 см³