1. Начертите прямую назови её любой буквой 2. отметьте точку на прямой дав её название 3.начерти две прямые, отметьте точку дав ей название вне прямой 4.начерти m, n, пересекающиеся в точке D. поставьте точки,лежащие и не лежащие на этих прямых.
Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.
Из подобия следует отношение
ВЕ:ВD=ВС:АВ⇒ВD•ВС=ВЕ•АВ ⇒
ВЕ:ВС=ВD:АВ
Две стороны ∆ ВЕD пропорциональны двум сторонам треугольника АВС, и угол между ними общий.
2-й признак подобия треугольников:
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
Следовательно, ∆АВС и ∆ ВЕD подобны, что и требовалось доказать.
Можно добавить. что коэффициент подобия равен косинусу общего угла, т.к. отношение катетов ∆ СВЕ и ∆ АВД к их гипотенузам соответственно равны косинусу угла В треугольника АВС.
1. Утверждение не верно, так как "четырехугольник можно вписать в окружность тогда и только тогда, когда сумма его противолежащих углов равна 180º". следовательно, окружность можно описать только около равнобедренной трапеции. 2. Утверждение верно, так как "центр описанной окружности выпуклого n-угольника лежит в точке пересечения серединных перпендикуляров к его сторонам". В правильном многоугольнике все стороны и углы равны, поэтому все серединные перпендикуляры пересекаются в одной точке. 3. Утверждение не верно, так как центр вписанной в четырехугольник окружности лежит на пересечении его биссектрис.
Рассмотрим ∆ АВD и ∆ СВЕ
Оба прямоугольные и имеют общий острые угол АВС.
Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.
Из подобия следует отношение
ВЕ:ВD=ВС:АВ⇒ВD•ВС=ВЕ•АВ ⇒
ВЕ:ВС=ВD:АВ
Две стороны ∆ ВЕD пропорциональны двум сторонам треугольника АВС, и угол между ними общий.
2-й признак подобия треугольников:
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
Следовательно, ∆АВС и ∆ ВЕD подобны, что и требовалось доказать.
Можно добавить. что коэффициент подобия равен косинусу общего угла, т.к. отношение катетов ∆ СВЕ и ∆ АВД к их гипотенузам соответственно равны косинусу угла В треугольника АВС.
2. Утверждение верно, так как "центр описанной окружности выпуклого n-угольника лежит в точке пересечения серединных перпендикуляров к его сторонам". В правильном многоугольнике все стороны и углы равны, поэтому все серединные перпендикуляры пересекаются в одной точке.
3. Утверждение не верно, так как центр вписанной в четырехугольник окружности лежит на пересечении его биссектрис.