1) Так як за умовою точка К належить відрізку CD, то CD = CK + KD.
Нехай СК = х (см), тоді KD = х + 4 (см),
оскільки CD = 28 см, то х + х + 4 = 28; 2х + 4 = 28; 2х = 24; х = 12.
СК = 12 см, КD = 12 + 4 = 16 см.
Biдповідь: СК = 12 см, КD = 16 см.
2) Так як за умовою точка К належить відрізку CD, то CD = СК + ATD.
Нехай KD = х (см), тоді СК = 6х (см), оскільки CD = 28 см, то
х + 6х = 28; 7х = 28; х = 4.
КD = 4 см, CК = 6 • 4 = 24 см.
Biдповідь: KD = 4 см, СК = 24 см.
3) Так як за умовою точка К належить відрізку CD, то CD = СК + KD.
Нехай х (см) - одна частина, тоді СК = 3х (см), KD = 4х (см),
оскільки CD = 28 см, то 3х + 4х = 28; 7х = 28; х = 4.
СК = 3 • 4 = 12 см, КD = 4 • 4 = 16 см.
ответ: 18
Объяснение:
Параллельные плоскости пересекаются третьей плоскостью по параллельным прямым.
1. Плоскости граней AA₁D₁D и ВВ₁С₁С параллельны. Они пересечены плоскостью (АВ₁С₁), значит линии пересечения параллельны.
(АВ₁С₁) ∩ (ВВ₁С₁) = В₁С₁,
В₁С₁ ║ВС и ВС║AD как противолежащие стороны прямоугольников, ⇒ В₁С₁ ║ AD. Тогда
(АВ₁С₁) ∩ (АА₁D₁) = AD.
AB₁C₁D - сечение параллелепипеда плоскостью (АВ₁С₁).
2. Секущая плоскость и плоскость (АВ₁С₁) параллельны, значит они пересекаются плоскостями граней параллелепипеда по параллельным прямым.
Проведем МТ║AD, MK║DC₁, TP║AB₁ и PK║B₁C₁.
MKPT - искомое сечение.
3. ТМ║ВС, ВТ║СМ, ∠ТВС = 90°, значит ТВСМ прямоугольник,
ТМ = ВС = 4.
Аналогично, РК = ВС = 4.
МКРТ - параллелограмм, так как МТ║РК и МТ = РК.
М - середина CD, МК║DC₁, значит МК - средняя линия ΔDCC₁, тогда К - середина СС₁.
ΔМКС: ∠МСК = 90°, МС = CD/2 = 4, СК = СС₁/2 = 3, значит МК = 5 (египетский треугольник).
Pmkpt = 2(TM + MK) = 2 · (4 + 5) = 2 · 9 = 18
1) Так як за умовою точка К належить відрізку CD, то CD = CK + KD.
Нехай СК = х (см), тоді KD = х + 4 (см),
оскільки CD = 28 см, то х + х + 4 = 28; 2х + 4 = 28; 2х = 24; х = 12.
СК = 12 см, КD = 12 + 4 = 16 см.
Biдповідь: СК = 12 см, КD = 16 см.
2) Так як за умовою точка К належить відрізку CD, то CD = СК + ATD.
Нехай KD = х (см), тоді СК = 6х (см), оскільки CD = 28 см, то
х + 6х = 28; 7х = 28; х = 4.
КD = 4 см, CК = 6 • 4 = 24 см.
Biдповідь: KD = 4 см, СК = 24 см.
3) Так як за умовою точка К належить відрізку CD, то CD = СК + KD.
Нехай х (см) - одна частина, тоді СК = 3х (см), KD = 4х (см),
оскільки CD = 28 см, то 3х + 4х = 28; 7х = 28; х = 4.
СК = 3 • 4 = 12 см, КD = 4 • 4 = 16 см.
Biдповідь: СК = 12 см, КD = 16 см.
ответ: 18
Объяснение:
Параллельные плоскости пересекаются третьей плоскостью по параллельным прямым.
1. Плоскости граней AA₁D₁D и ВВ₁С₁С параллельны. Они пересечены плоскостью (АВ₁С₁), значит линии пересечения параллельны.
(АВ₁С₁) ∩ (ВВ₁С₁) = В₁С₁,
В₁С₁ ║ВС и ВС║AD как противолежащие стороны прямоугольников, ⇒ В₁С₁ ║ AD. Тогда
(АВ₁С₁) ∩ (АА₁D₁) = AD.
AB₁C₁D - сечение параллелепипеда плоскостью (АВ₁С₁).
2. Секущая плоскость и плоскость (АВ₁С₁) параллельны, значит они пересекаются плоскостями граней параллелепипеда по параллельным прямым.
Проведем МТ║AD, MK║DC₁, TP║AB₁ и PK║B₁C₁.
MKPT - искомое сечение.
3. ТМ║ВС, ВТ║СМ, ∠ТВС = 90°, значит ТВСМ прямоугольник,
ТМ = ВС = 4.
Аналогично, РК = ВС = 4.
МКРТ - параллелограмм, так как МТ║РК и МТ = РК.
М - середина CD, МК║DC₁, значит МК - средняя линия ΔDCC₁, тогда К - середина СС₁.
ΔМКС: ∠МСК = 90°, МС = CD/2 = 4, СК = СС₁/2 = 3, значит МК = 5 (египетский треугольник).
Pmkpt = 2(TM + MK) = 2 · (4 + 5) = 2 · 9 = 18