1. начертите два неколлинеарных вектора a и b. постройте векторы, равные: а) - a + 3 b; б) 2 b – a.
2. на стороне bc ромба abcd лежит точка k так, что bk = kc, o – точка пересечения диагоналей. выразите векторы ao, ak через векторы a = ab и b = ad
3. в равнобедренной трапеции высота делит большее основание на отрезки, равные 5 и 12 см. найдите среднюю линию трапеции.
4. найдите медиану см треугольника авс, если а(-5; -2), в(-3; 4), с(2; 0)
с подробным решением, плс)00
Тогда, по теореме Пифагора (BE я обозначила как x):(см).ответ: длина меньшей стороны прямоугольной трапеции ABCD равна 9 см.
2
Для нахождения синусов углов в произвольном треугольнике, как это ни странно, проще использовать не теорему синусов, а теорему косинусов. Она гласит, что возведенная в квадрат длина любой стороны равна сумме квадратов длин двух других сторон без удвоенного произведения этих длин на косинус угла между ними: А²=В²+С2-2*В*С*cos(α). Из этой теоремы можно вывести формулу для нахождения косинуса: cos(α)=(В²+С²-А²)/(2*В*С) . А поскольку сумма квадратов синуса и косинуса одного и того же угла всегда равна единице, то можно вывести и формулу для нахождения синуса угла α: sin(α)=√(1-(cos(α))²)= √(1-(В²+С²-А²)²/(2*В*С) ²).
3
Воспользуйтесь для нахождения синуса угла двумя разными формулами расчета площади треугольника, в одной из которых задействованы только длины его сторон, а в другой - длины двух сторон и синус угла между ними. Так как результаты их будут равны, то из тождества можно выразить синус угла. Формула нахождения площади через длины сторон (формула Герона) выглядит так: S=¼*√((А+В+С) *(В+С-А) *(А+С-В) *(А+В-С)) . А вторую формулу можно написать так: S=А*В*sin(γ). Подставьте первую формулу во вторую и составьте формулу для синуса угла, лежащего напротив стороны С: sin(γ)= ¼*√((А+В+С) *(В+С-А) *(А+С-В) *(А+В-С) /(А*В)) . Синусы двух других углов можно найти по аналогичным формулам.