Ромб - четырехугольник с равными сторонами. ⇒ сторона ромба равна Р:4=16:4=4 дм Сумма углов параллелограмма, прилежащих к одной стророне ( а ромб- параллелограмм) равна 180° Тогда тупой угол ромба равен 180° минус острый угол. Если из тупого угла В ромба АВСД провести высоту ВН на АД, получим прямоугольный треугольник АВН, в котором катет ВН равен половине гипотенузы АВ. Наверное, Вы уже знаете, что, если катет прямоугольного треугольника равен половине гипотенузы, он лежит против угла 30°, Следовательно, тупой угол ромба равен 180°-30°=150° Вариант решения: Высота ромба - перпендикуляр, проведенный из вершины к его стороне или продолжению стороны.. В треугольнике АВН катет ВН равен половине гипотенузы АВ. Приловжим к треугольнику АВН равный ему треугольник АНВ₁. ВВ₁=2+2=4 дм В треугольнике АВВ₁ все стороны равны 4 дм, следовательно, он равносторонний. В равностороннем треугольнике все углы равны. Сумма углов треугольника равна 180ª⇒ ∠ АВН=180°:3=60º ⇒ ∠ АВС=∠АВН +∠НВС=60°+90°=150°
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
сторона ромба равна Р:4=16:4=4 дм
Сумма углов параллелограмма, прилежащих к одной стророне ( а ромб- параллелограмм) равна 180°
Тогда тупой угол ромба равен 180° минус острый угол.
Если из тупого угла В ромба АВСД провести высоту ВН на АД, получим прямоугольный треугольник АВН, в котором катет ВН равен половине гипотенузы АВ.
Наверное, Вы уже знаете, что, если катет прямоугольного треугольника равен половине гипотенузы, он лежит против угла 30°,
Следовательно, тупой угол ромба равен 180°-30°=150°
Вариант решения:
Высота ромба - перпендикуляр, проведенный из вершины к его стороне или продолжению стороны..
В треугольнике АВН катет ВН равен половине гипотенузы АВ.
Приловжим к треугольнику АВН равный ему треугольник АНВ₁.
ВВ₁=2+2=4 дм
В треугольнике АВВ₁ все стороны равны 4 дм, следовательно, он равносторонний. В равностороннем треугольнике все углы равны.
Сумма углов треугольника равна 180ª⇒
∠ АВН=180°:3=60º ⇒
∠ АВС=∠АВН +∠НВС=60°+90°=150°
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
ответ: KD=10см.