По определению, функция является четной (нечетной) если её область определения симметрична относительно начала координат и для любого х из области определения выполняется равенство f(-x)=f(x) ( для нечетности : f(-x)=-f(x)).
у=sinx - нечетная функция, область определения х- любое, sin(-x)=-sinx y=tgx- нечетная функция, область определения х-любое, кроме х=(π/2)+πk, k∈ Z. tg(-x)=-tgx
Область определения суммы (разности ) двух функций- пересечение областей определения входящих в сумму (разность) функций. Поэтому область определения данной функции х- любое, кроме х=(π/2)+πk, k∈ Z. f(-x)=sin(-x)-tg(-x)=-sinx-(-tgx)=-sinx+tgx=-(sinx-tgx)=-f(x). О т в е т. функция нечетная.
Точка, лежащая на биссектрисе угла, равно удалена от сторон этого угла. Наименьшее расстояние от точки до прямой - перпендикуляр. Опускаем перпендикуляр из точки Д на ВА - точка М. Треугольники ВМД и ВСД прямоугольные. Угол ДВС равен углу МВД, т.к. ВД - биссектриса угла В. Прямоугольные треугольники ВМД и ВКС равны по гипотенузе и острому углу. А в равных треугольниках против равных углов лежат равные стороны. Против угла ДВС лежит сторона ДС, а против угла МВД лежит сторона МД. Значит стороны эти равны, точка Д равноудалена от прямых ВС и АВ.
f(-x)=f(x) ( для нечетности : f(-x)=-f(x)).
у=sinx - нечетная функция,
область определения х- любое,
sin(-x)=-sinx
y=tgx- нечетная функция,
область определения х-любое, кроме х=(π/2)+πk, k∈ Z.
tg(-x)=-tgx
Область определения суммы (разности ) двух функций- пересечение областей определения входящих в сумму (разность) функций.
Поэтому область определения данной функции
х- любое, кроме х=(π/2)+πk, k∈ Z.
f(-x)=sin(-x)-tg(-x)=-sinx-(-tgx)=-sinx+tgx=-(sinx-tgx)=-f(x).
О т в е т. функция нечетная.
Точка, лежащая на биссектрисе угла, равно удалена от сторон этого угла. Наименьшее расстояние от точки до прямой - перпендикуляр. Опускаем перпендикуляр из точки Д на ВА - точка М. Треугольники ВМД и ВСД прямоугольные. Угол ДВС равен углу МВД, т.к. ВД - биссектриса угла В. Прямоугольные треугольники ВМД и ВКС равны по гипотенузе и острому углу. А в равных треугольниках против равных углов лежат равные стороны. Против угла ДВС лежит сторона ДС, а против угла МВД лежит сторона МД. Значит стороны эти равны, точка Д равноудалена от прямых ВС и АВ.