1.на основе ас равнобедренного треугольника авс отмечена точка м, а на бедреных сторонах ав и вс соответственно точки к и р так, что мк\\вс, мр\\ав. найдите длину вс, если известно, что р мквр=30 см.
2. в равносторонний трапеции авсd ( вс\\аd ) бисектрисы острых углов ваd и сda пересекаются в точке, которая прилегает к вс. все=36 см, надеюсь на вашу
34
подобрав t таким образом, чтобы получившийся вектор перпендикулярен a, то есть чтобы скалярное произведение этих векторов равнялось нулю.
MN=(1-2;1-4;2-1)=( - 1; - 3; 1);
(MN+ta;a)=0; (MN;a)+t(a;a)=0; (-1)5+(-3)(-1)+2+(5^2+(-1)^2+2^2)t=0;
-5+3+2+30t=0; t=0.
Таким образом, задача сформулирована так, что сам вектор MN перпендикулярен прямой m. Тем проще. Остается написать канонические уравнения прямой l, как прямой, проходящей через точку M и перпендикулярной вектору MN (хотя, если честно, я больше люблю параметрические уравнения...):
1)
Ox,y,z = (Ax,y,z + Cx,y,z)/2
О: х = (2 - 4)/2 = -1; у = (-3+5)/2 = 1; z = (1+6)/2 = 3,5
O(-1; 1; 3,5)
также Ox,y,z = (Bx,y,z + Dx,y,z)/2
Dx,y,z = 2*Ox,y,z - Bx,y,z
D: x = 2*(-1) - (-1) = -1: y = 2*1 - 1= 1; z = 2* 3,5 - 1 = 6;
D(-1; 1; 6)
2)
Ox,y,z = (Ax,y,z + Cx,y,z)/2
О: х = (2 - 4)/2 = -1; у = (-3+4)/2 = 0,5; z = (6+6)/2 = 6;
O(-1; 0,5; 6)
также Ox,y,z = (Bx,y,z + Dx,y,z)/2
Dx,y,z = 2*Ox,y,z - Bx,y,z
D: x = 2*(-1) - 1 = -3: y = 2*0,5 - 2= -1; z = 2* 6 - 3 = 9;
D(-3; -1; 9)