1.Квадрат ABCD обратили вокруг точки A так, что его вершина B перешла в D, a C - в C1. Найдите расстояние CC1, если AB = a. На какой угол выполнен поворот? 2.Вокруг какой точки и на какой угол следует повернуть равносторонний треугольник, чтобы он совместился с собой
Угол CAA_1 пересекается параллельными прямыми⇒по теореме о пропорциональных отрезках AG:GA_1=AB_1:B_1D=2:1.
Таким образом, медиана BB_1 в точке пересечения разделила медиану AA_1 в отношении 2 к 1, считая от вершины. Поскольку мы взяли две произвольные медианы, доказано, что каждая из них разделит каждую в отношении 2 к 1. Поэтому во-первых они пересекаются в одной точке, а во-вторых, делятся точкой пересечения в отношении 2 к 1, считая от вершины.
Замечание для продвинутых (21+)))Знающие теорему Чевы вопрос о том, что медианы пересекаются в одной точке, не задают. А знающие к тому же теорему Менелая, не спрашивают и про отношение 2 к 1. А знающие теорему Ван-Обеля просто умирают при этом со смеху, потому что для них решение прокручивается устно в голове за 0,5 секунды максимум
Будем накладывать эти треугольники. Сначала совместим точки A и A' и разместим треугольники так, чтобы лучи AB и A'B', а также лучи AC и A'C' оказали сонаправленными (это можно сделать, т.к. углы при вершине А равны)
Т.к. AB=A'B'; AC=A'C, то точки B и B', а также точки C и С' попарно совпадут. Но тогда совпадут и отрезки BC и B'C' - иначе через 2 точки проходило бы 2 прямые, что невозможно. Что и требовалось доказать.