1. концы отрезка ав, не пересекает плоскость α, находятся на расстоянии 4 см и 8 см от этой плоскости. на каком расстоянии от плоскостей находится середина отрезка ав? 2. один из концов данного отрезка лежит в плоскости β, а его середина находится на расстоянии 2 см от плоскости. на каком расстоянии от плоскости находится другой конец отрезка? 3. авсdа1в1с1d1 - прямоугольный параллелепипед (рис. 445), ав = 3 см, аd = 4 см, аа1 = 6 см. чему равно расстояние от точки в до прямой dс? 4. авсdа1в1с1d1 - прямоугольный параллелепипед (рис. 445), ав = 3 см, аd = 4 см, вв1 = 6 см. почему равно расстояние между прямыми а1в1 и dd1? 5. авсdа1в1с1d1 - прямоугольный параллелепипед (рис. 445), ав = 6 см, d = 8 см, вв1 = 9 см. чему равно расстояние от точки а1 до плоскости в1bd? 6. каком из предложенных значений не может равняться угол между скрещивающимися прямыми? 7. наклонная ам образует с плоскостью α угол 45° (рис. 436). найти длину наклонной, если длина ее проекции равна 2 см. 8. две плоскости пересекаются под углом 60°. точка а лежит в одной из плоскостей и удалена от второй плоскости на расстояние 6 см. найти расстояние от точки а до линии пересечения плоскостей. 9. ∆авс1 является ортогональной проекцией ∆авс на плоскость α (рис. 444). площадь треугольника авс равна 40 см2, а площадь треугольника авс1 равна 20 см2. найти угол φ между плоскостями авс и α. 10. авсdа1в1с1d1 - куб (рис. 445). найти угол между прямыми аа1 и вс1. 11. через вершину а квадрата авсd со стороной 8 см проведена перпендикуляр ао, длина которого 7 см. найти (в см) расстояние от точки т до прямой вd. 12. через гипотенузу ав прямоугольного треугольника авс проведена плоскость β, которая образует с плоскостью треугольника угол 30°. найти (в см) расстояние от точки с до плоскости β, если ас=6 см, св = 8 см.
Определите периметр прямоугольника, если его диагональ равна 2√10 м, а площадь 12 м²
Вариант решения (если уже знакомы с теоремой косинусов)
Площадь параллелограмма, а прямоугольник, как известно, - параллелограмм, можно найти разными в том числе по формуле
S=0,5•d₁•d₂•sin α /2, где d₁и d₂ - диагонали, α- угол между ними.
В прямоугольнике диагонали равны, поэтому
S=0,5•d²•sin α
12=0,5•(2√10)²•sin α⇒
sin α=2S:d²=24: 40=0,6
sin²α+cos²α=1⇒
cos α=√(1-0,36)=0,8
Теорема косинусов.
Квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними
Эта формула позволяет вычислить длину одной из сторон треугольника по данным длинам двух других сторон и величине угла, лежащего против неизвестной стороны.
Пусть данный прямоугольник АВСД, и О – точка пересечения его диагоналей.
АВ²=ВО²+АО²-2•BO•AO•cos α
В прямоугольнике диагонали равны и точкой пересечения делятся пополам, поэтому АО=ВО=d/2=√10⇒
Тогда
AB²=10+10-2•(√10)•(√10)•0,8⇒
АВ²=4
АВ=СД=2 м
Из другой формулы площади прямоугольника
S=a•b найдем вторую сторону:
S=АД•AB
12=АД•2
ВС=АД=12:2=6 м
Р=2(AB+BC)=16 м