1. концы отрезка ав имеют координаты а(2; -2), в(-2; 2). найдите координаты
середины этого отрезка.
2. даны точки a(2; 7), b(-2; 7).
a) найдите координаты вектора ав ,
б) найдите длину вектора ав .
3. уравнение окружности имеет вид: (x+5) +(y-1) = 16.
a) постройте эту окружность;
6) лежит ли точка a(-5; -3) на данной окружности? ответ обоснуйте.
Русский писатель-сатирик, журналист и т.д .Каждый из великих писателей национальной литературы занимает в ней свое особое, только ему принадлежащее место. Главное своеобразие М. Е. Салтыкова-Щедрина в русской литературе заключается в том, что он был и остается в ней крупнейшим представителем социальной критики и обличения. Островский называл Щедрина “пророком” и ощущал в нем “страшную поэтическую силу”.
Салтыков-Щедрин выбрал, как мне кажется, самый сложный жанр литературы — сатиру. Ведь сатира — это вид комического, наиболее беспощадно высмеивающий действительность и, в отличие от юмора, не дающий шанса на исправление.
3. Писатель проявил себя во многих жанрах литературы. Из-под его пера вышли романы, хроники, повести, рассказы, очерки, пьесы. Но наиболее ярко художественный талант Салтыкова-Щедрина выражен в его знаменитых “Сказках”. Сам писатель определил их так: “Сказки для детей изрядного возраста”. Они сочетают в себе элементы фольклора и авторской литературы: сказки и басни. 3. В них наиболее полно отражены жизненный опыт и мудрость сатирика. Несмотря на злободневные политические мотивы, сказки все равно сохраняют все обаяние народного творчества: “В некотором царстве Богатырь родился. Баба-Яга его родила, вспоила, вскормила…” (“Богатырь”).
Многие сказки Салтыков-Щедрин создал путем использования приема иносказания. Эту свою манеру письма автор назвал эзоповским языком по имени древнегреческого баснописца Эзопа, который в давние времена пользовался таким же приемом в своих баснях. Эзопов язык был одним из средств защиты щедринских произведений от терзавшей их царской цензуры.
Доказать : треугольник ABC = треугольнику HKP
Доказательство :
1)по условию теоремы угол A = углу H,поэтому треугольник ABC можно наложить на треугольник HKP так, что вершина A совместится с вершиной H,а стороны AB и AC наложатся соответственно на лучи HK и HKP
2) По условию AB= HK, AC = HP, следовательно, сторона AB совместится со стороной HP, а сторона AC - со стороной HK, в частности, совместятся точки B и K, C и P. Поэтому совместятся стороны P и BC.
3) Итак, треугольники ABC и HKP полностью совместятся, значит, они равны.
Теорема доказана.