1) Катетами треугольника АВС с прямым
углом В являются отрезки ...
а) АВ и АС; в) ВС и АС;
б) АВ и ВС; г) АС.
2) На рисунке отрезок АВ является ...
а) наклонной; В
б) секущей;
в) перпендикуляром; А С
г) касательной.
2) На рисунке отрезок АВ является ...
а) наклонной; В
б) перпендикуляром;
в) касательной; А С
г) секущей.
3) В прямоугольном треугольнике АВС с
прямым углом А гипотенуза ВС равна
12см, угол В равен 30°. Тогда катет АС
равен ...
а) 12см; б) 6см;
в) 18см; г) 4см.
3) В прямоугольном треугольнике АВС с
прямым углом С катет ВС равен 12см,
угол А равен 30°. Тогда гипотенуза АВ
равна ...
а) 12см; б) 6см;
в) 18см; г) 4см.
4) Один из острых углов прямоугольного
треугольника равен 43°. Тогда второй
острый угол равен ...
а) 43°; б) 47°;
в) 57°; г) 137°.
4) Один из острых углов прямоугольного
треугольника равен 28°. Тогда второй
острый угол равен ...
а) 62°; б) 118°;
в) 152°; г) 72°.
Задания 5 – 8 выполните с полным обоснованием
5) Один из углов прямоугольного
треугольника равен 60°, а сумма
гипотенузы и меньшего катета равна 36
см. Найдите гипотенузу и меньший катет.
5) Один из углов прямоугольного
треугольника равен 60°, а сумма
гипотенузы и меньшего катета равна 27см.
Найдите гипотенузу и меньший катет.
6) Из точки Д биссектрисы угла А
проведены перпендикуляры КД и МД к
сторонам угла. Докажите, что <АДК =
<АДМ.
6) Из точки Р биссектрисы угла О проведены
перпендикуляры РА и РТ к сторонам угла.
Докажите, что РА = РТ
7) Постройте прямоугольный треугольник
МТК по катету 6см и прилежащему
острому углу 43°.
Опишите кратко ход построения
7) Постройте равнобедренный треугольник
АМР по основанию 6см и прилежащему
углу 43°.
Опишите кратко ход построения
8) * Постройте треугольник АВС, в котором
АВ = 5см, АС = 8см, высота ВД = 3см.
Опишите кратко ход построения
8) * Постройте треугольник АВС, в котором
АВ =7 см, ВС = 5см, высота ВД = 4см.
РЕШИТЕ
№1.
Угол между касательной и радиусом, проведенным к ней равен 90 градусов, поэтому ОА будет гипотенузой в треугольнике АВО, а ОВ - катетом. Дальше из теоремы Пифагора:
АВ=
и того, АВ=8
ответ:8см.
№2.
уголA+уголB+уголC=180°( по теореме о сумме углов в треугольнике)
Уравнение:
Пусть Х будет угол А, тогда 3Х угол В, а 5Х угол С
Х+3Х+5Х=180
9Х=180
Х=180:9
Х=20°
20*3 равно=60градусов
ответ: угол В= 60 градусов, угол С= 100 градусов.
№3.
Длина диаметра 20 см. Концы диаметра и данная точка окружности образуют вписанный угол, опирающийся на диаметр. Вписанный угол, опирающийся на диаметр, прямой.
Значит, получившейся треугольник будет прямоугольным. Расстояние от другого конца диаметра до данной точки найдем по теореме Пифагора, как длину катета прямоугольного треугольника:
=(20-16)(20+16)=4*36=144
см
ответ:12 см.
идеально
Объяснение:
Объяснение:
1. Сумма углов правильного n-угольника равна 180 • n - 360 или 180 • (n-2). А теперь считаем:
180 • 14 - 360 = 2160 или 180 • (14 - 2) = 2160
2.Площадь параллелограмма равна: сторона * высоту, проведенную к ней. Следовательно: 84 \ 12 = 7 (см)
3.Обозначим треугольник как АВС где АС основание, ВК - высота. зная что АВ = 15, а ВК = 9 найдём АК по теореме пифагора:
АК в квадрате = АВ в квадрате-ВКв квадрате , АК в квадрате = 225 - 81
АК=корень из 144 , АК = 12.
так как треуг равнобедренный то АВ = СВ = 15 . Найдём КС по теореме пифагора:
КС в квадрате = ВС в кв-ВК в кв , КС в кв = 225-81=144 в корне
КС = 12, значит АС = АК+КС
АС=24 , найдём площадь по формуле
ответ:108 см кв
4.Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам.
Пусть ВО = х, тогда BD = 2x, AC = 2x +28, AO = x + 14
ΔABO: ∠O = 90°
По теореме Пифагора:
AB² = AO² + OB²
26² = (x + 14)² + x²
x² + 28x + 196 + x² - 676 = 0
2x² + 28x - 480 = 0
x² + 14x - 240 = 0
D/4 = 7² + 240 = 49 + 240 = 289 = 17²
x = -7 + 17 = 10 или x = -7 -17 = -24 не подходит по смыслу задачи
BD = 20 см
AC = 20 + 28 = 48 см
Sabcd = 1/2 ·BD · AC = 1/2 · 20 · 48 = 480 (см²)
5.фото
а 2 вариант на подобия этого подставить под формулы