1. Каково взаимное расположение сторон треугольника и окружности?
2. Укажите геометрическое место точек, равноудаленных от сторон угла А, В, С.
3. Как найти центр вписанной в треугольник окружности?
4. Чему равен радиус вписанной в треугольник окружности?
построем рисунок, в треугольнике ВСD: ВС=СD (т.к. шестиугольник правильный), угол равен 120 градусов, (по формуле для нахлждения угла в правильном многоугольнике а=180(n-2)/n), проведһм перпендикуляр СН, угол ВHC = (180-120)/2=30 (т.к. треугольник равнобедренный, углы при основании равны) следовательно, СН=0,5ВС = корень из 48 по полам=корень из двенадцати (после преобразования)
теперь ВН = (по теореме пифагора) корень из (48-12) = корень из 36 = 6
ВН равно HD (т.к. в равнобедренном треугольнике высота равна медиане) следовательно ВD=2BH = 6*2 = 12
Как то так!
36:3=12.
Опустим высоту в треугольнике до пересечения с окружностью. Соединим полученную точку с одной из оставших вершин заданного треугольника. Получим прямоугольный треугольник, гипотенуза которого является диаметром окружности. Угол между высотой треугольника и его стороной равен 30°. Высота в правильном треугольнике является и биссектрисой и медианой. 60°:2=30°.
Вычислим диаметр окружности:
d=12:cos30°=12:(√3/2)=24/√3=24·√3/√3·√3=24√3/3=8√3.
Диагональю квадрата является диаметр окружности. Обозачим сторону квадрата через а.
По теореме Пифагора: a²+a²=d², 2a²=(8√3)².
2a²=64·3,
a²=32·3=16·2·3,
a=√16·6=4√6.
a=4√6.