1) какому из указанных векторов равен вектор c(3; 1; 2)? a) b(2; 3; 1) б) a(3; 1; 2) в) x(1; 2; 3) г)n(1; 3; 2) 2) при каких значениях n векторы a(2; 1; n) и b(-3; m; n) перпендикулярны? а)ни при каких б) при n=-1 в) при n=1 г) при n=+-1 3) вычислите длину вектора m=a-2b , если |a|=2, |b|=1 , а угол между векторами a и b равен 60° 4) дан треугольник abc : a(0; 1; -1), b(1; -1; 0) и c(0; 1; 1). найти косинус угла а треугольника авс 5) при каких значениях n и m векторы а(-1; 4; -2) и b(-3; m; n) коллинеарны ?
Призма
Призмой называется многогранник, две грани которого n-угольники, а остальные n граней — параллелограммы.Боковые ребра призмы равны и параллельны.
Перпендикуляр, проведенный из какой-либо точки одного основания к плоскости другого основания, называется высотой призмы. Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани, называется диагональю призмы.Поверхность призмы состоит из оснований и боковой поверхности призмы. Боковая поверхность призмы состоит из параллелограммов.
Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой. В противном случае призма называется наклонной.
У прямой призмы боковые грани – прямоугольники.
Высота прямой призмы равна ее боковому ребру.
Прямая призма называется правильной, если она прямая, и ее основания — правильные многоугольники
Площадь поверхности и объём призмы
Пусть H — высота призмы, — боковое ребро призмы, — периметр основания призмы, площадь основания призмы, — площадь боковой поверхности призмы, — площадь полной поверхности призмы, - объем призмы, — периметр перпендикулярного сечения призмы, — площадь перпендикулярного сечения призмы. Тогда имеют место следующие соотношения:
Для прямой призмы, у которой боковые ребра перпендикулярны плоскостям оснований, площадь боковой поверхности и объем даются формулами:
Параллелепипед
Параллелепипедом называется призма, основанием которой является параллелограмм.
Параллелограммы, из которых составлен параллелепипед, называются его гранями, их
Объяснение:
Смежные и вертикальные углы. Перпендикулярные прямые
Два угла называются смежными, если у них одна сторона общая, а другие стороны этих углов являются дополнительными лучами. углы АОВ и ВОС смежные.
Геометрия ГИА, Сумма смежных углов равна 180°
Сумма смежных углов равна 180°
Луч ОВ (см. рис.1) проходит между сторонами развернутого угла. Поэтому ∠ АОВ + ∠ ВОС = 180° .
Из теоремы 1 следует, что если два угла равны, то смежные с ними углы равны.
Геометрия ГИА, Вертикальные углы равны
Вертикальные углы равны
Рис.2
Два угла называются вертикальными, если стороны одного угла являются дополнительными лучами сторон другого. Углы АОВ и COD, BOD и АОС, образованные при пересечении двух прямых, являются вертикальными (рис. 2).
Теорема 2. Вертикальные углы равны.
Доказательство. Рассмотрим вертикальные углы АОВ и COD (см. рис. 2). Угол BOD является смежным для каждого из углов АОВ и COD. По теореме 1 ∠ АОВ + ∠ BOD = 180°, ∠ COD + ∠ BOD = 180°.
Отсюда заключаем, что ∠ АОВ = ∠ COD.
Следствие 1. Угол, смежный с прямым углом, есть прямой угол.
Геометрия ГИА, Прямые АС и BD перпендикулярные
Рис.3
Рассмотрим две пересекающиеся прямые АС и BD (рис.3). Они образуют четыре угла. Если один из них прямой (угол 1 на рис.3), то остальные углы также прямые (углы 1 и 2, 1 и 4 — смежные, углы 1 и 3 — вертикальные). В этом случае говорят, что эти прямые пересекаются под прямым углом и называются перпендикулярными (или взаимно перпендикулярными). Перпендикулярность прямых АС и BD обозначается так: AC ⊥ BD.
Серединным перпендикуляром к отрезку называется прямая, перпендикулярная к этому отрезку и проходящая через его середину.
Геометрия ГИА, АН — перпендикуляр к прямой
АН — перпендикуляр к прямой
Рис.4
Рассмотрим прямую а и точку А, не лежащую на ней (рис.4). Соединим точку А отрезком с точкой Н прямой а. Отрезок АН называется перпендикуляром, проведенным из точки А к прямой а, если прямые АН и а перпендикулярны. Точка Н называется основанием перпендикуляра.
Геометрия ГИА, Чертежный угольник
Чертежный угольник
Рис.5
Справедлива следующая теорема.
Теорема 3. Из всякой точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один.
Для проведения на чертеже перпендикуляра из точки к прямой используют чертежный угольник (рис.5).
Замечание. Формулировка теоремы обычно состоит из двух частей. В одной части говорится о том, что дано. Эта часть называется условием теоремы. В другой части говорится о том, что должно быть доказано. Эта часть называется заключением теоремы. Например, условие теоремы 2 — углы вертикальные; заключение — эти углы равны.
Всякую теорему можно подробно выразить словами так, что ее условие будет начинаться словом «если», а заключение — словом «то». Например, теорему 2 можно подробно высказать так: «Если два угла вертикальные, то они равны».