1)Из точки А опущен перпендикуляр АВ равное 12см на прямую М, и проведены наклонные АС равные 15см и АД равное 20см соответственно. Найти между этими проекциями. а) 9 б)6 в)7 г) 5
1. Прямые называют перпендикулярными, если они пересекаются под прямым углом (пример ниже).
2. Через одну точку на данную прямую можно опустить один перпендикуляр и только один. Если предположить, что можно провести, скажем, два перпендикуляра из заданной точки, то в получившемся треугольнике будет два прямых угла, что невозможно.
3. Градусная мера прямого угла = 90°.
4. Перпендикуляр — отрезок прямой, перпендикулярной данной, имеющий одним из своих концов точку их пересечения.
5. Наклонной, проведённой из данной точки к данной плоскости, называется любой отрезок, соединяющий данную точку с точкой плоскости, не являющийся перпендикуляром к плоскости.
6. Из точки А к прямой можно провести бесконечно много наклонных.
1. Расстояние между двумя параллельными плоскостями - перпендикуляр (кратчайшее расстояние). Следовательно: если точка находится на расстоянии 3 ед от одной из них, то расстояние до второй - (8-3)=5 ед.
2. Треугольники, образованные наклонными, их проекциями и вертикалью а - равнобедренные (углы при основании по 45°) ⇒ длина проекции - а;
треугольник образованный двумя проекциями с длиной а и отрезком, соединяющий их концы, равнобедренный. Угол при вершине 120° (по условию). Тогда углы при основании -
(180-120):2=30°;
высота, проведенная из вершины получившегося треугольника равна а/2 (сторона лежащая против угла 30°);
расстояние между концами наклонных равно удвоенной длине катета образованного высотой (а/2), гипотенузой (а) и половиной основания - √(а²-(а/2)²)=√(3а²/4)=а√3/2;
расстояние между концами наклонных 2*а√3/2=а√3 ед.
1. Прямые называют перпендикулярными, если они пересекаются под прямым углом (пример ниже).
2. Через одну точку на данную прямую можно опустить один перпендикуляр и только один. Если предположить, что можно провести, скажем, два перпендикуляра из заданной точки, то в получившемся треугольнике будет два прямых угла, что невозможно.
3. Градусная мера прямого угла = 90°.
4. Перпендикуляр — отрезок прямой, перпендикулярной данной, имеющий одним из своих концов точку их пересечения.
5. Наклонной, проведённой из данной точки к данной плоскости, называется любой отрезок, соединяющий данную точку с точкой плоскости, не являющийся перпендикуляром к плоскости.
6. Из точки А к прямой можно провести бесконечно много наклонных.
1. 5 ед.
2. а√3 ед
Объяснение:
1. Расстояние между двумя параллельными плоскостями - перпендикуляр (кратчайшее расстояние). Следовательно: если точка находится на расстоянии 3 ед от одной из них, то расстояние до второй - (8-3)=5 ед.
2. Треугольники, образованные наклонными, их проекциями и вертикалью а - равнобедренные (углы при основании по 45°) ⇒ длина проекции - а;
треугольник образованный двумя проекциями с длиной а и отрезком, соединяющий их концы, равнобедренный. Угол при вершине 120° (по условию). Тогда углы при основании -
(180-120):2=30°;
высота, проведенная из вершины получившегося треугольника равна а/2 (сторона лежащая против угла 30°);
расстояние между концами наклонных равно удвоенной длине катета образованного высотой (а/2), гипотенузой (а) и половиной основания - √(а²-(а/2)²)=√(3а²/4)=а√3/2;
расстояние между концами наклонных 2*а√3/2=а√3 ед.