1. Две прямые касаются окружности с центром О в точках А и В и пересекаются в точке С. Найдите угол между этими прямыми, если ABO=400. А можно с картинкой что бы был чертеж и было понятно по возможности можете сразу два задания сделать :) заранее
Рассмотрим треугольник АВС с основанием АС. Проведём из этих вершин высоты: АН1 и CН2 Этот треугольник АВС перевернём так, что АВ станет основанием. Углы при основании ∠B и ∠A.Проведём высоту CH2. Перевернём этот треугольник ещё раз но в этом случае основание CB. углы при основании ∠B и ∠C.Проведём высоту AH1 т.е. у нас получается 2 равных треугольника так как у нас CB=AB и ∠A=∠C по условии, потому что это равнобедренный треугольник. Эти треугольники равны по 2 признаку равенства треугольников (по 2-м углам и стороне между ними) отсюда следует что высоты проведённые с вершин основания в равнобедренном треугольнике равны
Дано:
MABCD - правильная пирамида
MO⊥(ABCD)
MA = MB = MC = MD = 10
P(ABCD) = 24√2
-------------------------------------------------------------------------
Найти:
SO - ?
В правильном пирамиде в основании лежит квадрат ABCD, значит мы находим сторону основание квадрата:
AB = BC = CD = AD = P/4 = 24√2 / 4 = 6√2
Далее мы находим диагональ квадрата AC по такой формуле:
AC = AB√2 = 6√2 × √2 = 6×(√2)² = 6×2 = 12
Далее мы находим половину диагонали квадрата в правильной пирамиде:
AO = AC/2 = 12/2 = 6 ⇒ AO = OC = 6
И теперь находим высоту MO по теореме Пифагора:
AM² = AO² + MO² ⇒ MO = √AM² - AO²
MO = √10² - 6² = √100-36 = √64 = 8
ответ: MO = 8
Проведём из этих вершин высоты: АН1 и CН2
Этот треугольник АВС перевернём так, что АВ станет основанием. Углы при основании ∠B и ∠A.Проведём высоту CH2.
Перевернём этот треугольник ещё раз но в этом случае основание CB.
углы при основании ∠B и ∠C.Проведём высоту AH1
т.е. у нас получается 2 равных треугольника так как у нас CB=AB и ∠A=∠C по условии, потому что это равнобедренный треугольник. Эти треугольники равны по 2 признаку равенства треугольников (по 2-м углам и стороне между ними)
отсюда следует что высоты проведённые с вершин основания в равнобедренном треугольнике равны