1. Дві сторони трикутника дорівнюють 8 см і 12 см, а висота, проведена до меншої з них, — 3 см. Знайдіть висоту, проведену до більшої сторони.
а) 2 см
б) 4.5 см
в) 4 см
г) 10 см
2. Периметр квадрата дорівнює 36 см. Знайдіть його площу.
а) 16 см2
б) 72 см2
в) 81 см2
3. Знайдіть площу ромба зі стороною 12 см і гострим кутом 30°.
а) 144 см2
б) 72 см2
в) 72√3см2
г) 36см2
4. Площа прямокутника — 48 см2, одна з його сторін дорівнює 6 см. Знайдіть периметр прямокутника.
а) 28 см
б) 30 см
в) 56 см
5. Знайдіть площу прямокутника зі стороною 5 м і діагоналлю 13 м
а) 60 см2
б) 60 м2
в) 156 м2
г) 65 м2
В условии ошибка: ВС ║AD, а не АС, так как параллельные прямые не могут проходить через одну точку.
BF = DE по условию,
∠AED = ∠CFB по условию,
∠CBF = ∠ADE как накрест лежащие при пересечении параллельных прямых ВС и AD секущей BD, ⇒
ΔCBF = ΔADE по стороне и двум прилежащим к ней углам.
Значит CF = AE,
BE = BF - EF, DF = DE - EF, а так как BF = DE, то и BE = DF,
∠CFD = ∠AEB как смежные с равными углами (∠AED = ∠CFB по условию),
значит ΔCFD = ΔAEB по двум сторонам и углу между ними.
Тогда ∠АВЕ = ∠CDF, а эти углы - накрест лежащие при пересечении прямых АВ и CD секущей BD, значит АВ║CD.
ОД = Н/tg 60° = 10√3 / √3 = 10.
ОД (по свойству медиан) = (1/3) СД =(1/3)*а*cos 30° = (1/3)*a *(√3/2) = a√3/6. Отсюда а (сторона основания пирамиды) равно: а = 6*ОД/√3 = 6*10/√3 = 60/√3 = 20√3.
Периметр основания Р = 3а = 3*20√3 = 60√3.
Апофема SД = Н/sin 60° = 10√3/(√3/2) = 20 = А.
Площадь боковой поверхности:
Sбок = (1/2)Р*А = (1/2)*60√3*20 = 600√3.
Площадь основания:
Sо = а²√3/4 = (20√3)²*√3/4 = 300√3.
Площадь полной поверхности:
S = Sо + Sбок = 300√3 + 600√3 = 900√3.
Объём пирамиды V = (1/3)Sо*H = (1/3)*(300√3)*(10√3) =
= 3000.