1. Дуга кругового сектора равна 105°. Найдите площадь этого сектора, если площадь всего круга равна 48см^2. 2. Длина дуги в 72° равна 5см. Найдите длину всей окружности.
Рассмотрим треугольники авс и mnc. они подобны по второму признаку подобия: две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны: - cn : cb = cm : ca = 9 : 12 = 12 : 16 = 3 : 4 (коэф. подобия 3/4); - угол с - общий для треугольников. у подобных треугольников соответственные углы вас и nmc равны. они являются также соответственными углами при пересечении двух прямых ав и mn секущей ас. используем один из признаков параллельности двух прямых: если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны. значит, ab ii mn.
1. конус — тело, полученное объединением всех лучей, исходящих из вершины конуса, и проходящих через плоскую поверхность.
формула площади полной поверхности конуса:
s = πr^2 + πrl = π r(r+l)
где s - площадь, r - радиус основания конуса, l - образующая конуса.
2. обозначим: о - центр шара, а - конец радиуса, в - конец другого радиуса, проведенного перпендикулярно к оа. ав- диаметр сечения. из равнобедренного прямоугольного треугольника найдем ав (любым известным способом, например, по теореме пифагора) ав = 8корней из 2, т. е. диаметр сечения 8 корней из 2, следовательно, радиус сечения 4 корня из 2. площадь сечения 32 пи.
3. площадь осевого сечения цилиндра равна площади диагонального сечения куба, которое в свою очередь, равно произведению ребра куба на величину диагонали грани куба.
формула площади полной поверхности конуса:
s = πr^2 + πrl = π r(r+l)
где s - площадь, r - радиус основания конуса, l - образующая конуса.
2. обозначим: о - центр шара, а - конец радиуса, в - конец другого радиуса, проведенного перпендикулярно к оа. ав- диаметр сечения. из равнобедренного прямоугольного треугольника найдем ав (любым известным способом, например, по теореме пифагора) ав = 8корней из 2, т. е. диаметр сечения 8 корней из 2, следовательно, радиус сечения 4 корня из 2. площадь сечения 32 пи.
3. площадь осевого сечения цилиндра равна площади диагонального сечения куба, которое в свою очередь, равно произведению ребра куба на величину диагонали грани куба.