1)Даны точки M(-4; 3; 2) и N0; 5; -8). Найдите координаты вектора NM и его длину. 2)Даны три некомпланарных вектора: (3; 2;1) (0;1; -1); (7; - 2; 3) . Разложите вектор (2;1;B 7) по данным векторам. 3)Даны точки А (-5; 2; 0), B(-4; 3; 0), C (-5; 2; -2). Найдите координаты векторов ВА, СВ, СА и вычислите ВА, СВ, СА.
решение:AO = BO; AO = AD - OD, BO = BC - OC. ∠3 = ∠4; ∠3 = ∠BAC - ∠1, ∠4 = ∠ABD - ∠2. ∠5 = ∠6. вертикальные
CO = OD; 2. CA = BD; 3. AO = OB. ∆AOC = ∆BOD (III признак) IV. 1. AC = BD; 2. ∠3 = ∠4; 3. ∠C = ∠D. ∆AOC = ∆BOD (II признак) II. 1. CO = OD; 2. ∠5 = ∠6; 3. ∠C = ∠D. ∆AOC = ∆BOD (II признак) III. 1. AO = OB; 2. AC = BD; 3. ∠3 = ∠4. ∆AOC = ∆BOD (I признак) V. 1. AC = BD; 2. ∠C = ∠D; 3. CO = OD. ∆AOC = ∆BOD (I признак) VI. 1. CO = OD; 2. AO = OB; 3. ∠5 = ∠6. ∆AOC = ∆BOD (I признак) VII. 1. AO = OB; 2. ∠5 = ∠6; 3. ∠3 = ∠4. ∆AOC = ∆BOD (II признак)
составим уравнения прямых АВ и СД
1) Прямая АВ проходит через точки А (8; -3) и В(2; 5)
у = кх + в
Подставляем координаты точек А и В и получаем систему уравнений
-3 = к·8 + в
5 = к· 2 + в
вычтем из 1-го уравнения 2-е и найдём к
-8 = 6к ---> к = -4/3
Длина отрезка АВ равна
АВ = √[(2 - 8)² + (5 - (-3))²] = 10
Для противоположной стороны СД проделываем те же действия
у = кх + в
подставляем координаты точек С и Д
11 = к·10 + в
3 = к· 16 + в
вычитаем из 1-го уравнения 2-е
8 = -6к ---> к = -4/3
Длина отрезка СД равна
СД = √[(3 - 11)² + (16 - 10)²] = 10
Поскольку угловые коэффициенты (к = -4/3) одинаковые у прямых АВ и СД,
то АВ//СД (параллельны!)
Длины отрезков АВ и СД также одинаковы АВ = СД = 10
По известной теореме : Если две противоположные стороны четырехугольника равны и параллельны, то этот четырехугольник - параллелограмм, что и требовалось доказать