1) Дана геометрическая прогрессия (Сn) . Найдите: С3, если с1= 8, q=1/2 2) Найдите сумму первых пяти членов геом.прогрессии , если b1 = 32, q=1/2 3) Найдите первый челн геометрические прогрессии
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
ответ: KD=10см.
★☆★ Чертёж смотрите во вложении ★☆★
Дано:
Отрезки АМ и ВК пересекаются в точке О.
Точка О — серединная точка для отрезков АМ и ВК (ОА = ОМ ; ОВ = ОК).
Доказать:
АВ║МК.
Доказательство:
ⵈ◊ⵈ Для седьмого класса ⵈ◊ⵈ
Соединим точки А и В отрезком АВ ; точки В и М отрезком ВМ ; точки К и М отрезком КМ ; точки А и К отрезком АК.
Рассмотрим ΔАОВ и ΔМОК.
ОА = ОМ (по условию).
ОВ = ОК (по условию).
∠АОВ = ∠МОК (как вертикальные).
Следовательно, ΔАОВ = ΔМОК по двум сторонам и углу между ними (первый признак равенства треугольников).
▸В равных треугольниках против равных сторон лежат равные углы◂
ОВ = ОК.
Следовательно, ∠ВАО = ∠ОМК.
Рассмотрим прямые АВ и МК при секущей АМ.
▸Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны◂
Накрест лежащие ∠ВАО = ∠ОМК (по выше доказанному), следовательно, АВ║МК (по выше сказанному).
ⵈ◊ⵈ Для восьмого класса ⵈ◊ⵈ
Соединим точки А и В отрезком АВ ; точки В и М отрезком ВМ ; точки К и М отрезком КМ ; точки А и К отрезком АК.
Рассмотрим получившиеся выпуклый четырёхугольник АКМВ.
АМ и ВК — диагонали.
▸Если диагонали выпуклого четырёхугольника точкой пересечения делятся пополам, то такой четырёхугольник — параллелограмм◂
ОА = ОМ (по условию).
ОВ = ОК (по условию).
Следовательно, четырёхугольник АКМВ — параллелограмм.
▸Параллелограмм — четырёхугольник, противоположные стороны которого параллельны ◂
Поэтому, по выше сказанному —
АВ║МК ; АК║ВМ
Объяснение: