1. Дан треугольник EFG Определить а) углы ДEFG, прилежащиек стороне EF. б) угол заключенный между сторонами GE и EF г) угол, заключенный между сторонами EF и FG; д) Между какими сторонами в ДEFG заключен угол G
Сумма углов, прилежащих к боковой стороне, равна 180°
Меньший угол х, больший 3х, тогда х+2х=180
х=180/3
х=60
Меньший угол 60°, больший 2*60°=120°
Если опустить перпендикуляры из вершин тупых углов на большую сторону, то отрезки, отсекаемые ими равны половинам боковых сторон, т.к. прямоугольные треугольники, образованные высотами, боковыми сторонами и отрезками нижнего большего содержат угол в 30°, против которого лежат эти отрезки, т.е. 8/2=4/см/
а нижнее большее основание состоит из меньшего основания и двух отрезков по 4+4+4=12.
Периметр - сумма длин всех сторон, он равен
4+12+2*8=32/см/
средняя линия трапеции равна полусумме оснований. т.е. (12+4)/2=
2х = 2 * (L/8) = L/4 - это и будет точка, разбивающая отрезок в отношении: 2 : 6.
2-й с циркуля и нешкалированной линейки).
1) Чертим произвольный отрезок.
2) Из концов отрезка, раствором циркуля, превышающим половину длины отрезка, делаем по 2 засечки (сверху и снизу).
3) Прикладываем линейку к точкам пересечения засечек и проводим линию, пересекающую отрезок, - это середина отрезка.
4) Аналогично делим пополам, левую половину отрезка и полученную точку отмечаем как границу, которая делит отрезок в отношении 2:6, или, что одно и то же, - 1:3.
Сумма углов, прилежащих к боковой стороне, равна 180°
Меньший угол х, больший 3х, тогда х+2х=180
х=180/3
х=60
Меньший угол 60°, больший 2*60°=120°
Если опустить перпендикуляры из вершин тупых углов на большую сторону, то отрезки, отсекаемые ими равны половинам боковых сторон, т.к. прямоугольные треугольники, образованные высотами, боковыми сторонами и отрезками нижнего большего содержат угол в 30°, против которого лежат эти отрезки, т.е. 8/2=4/см/
а нижнее большее основание состоит из меньшего основания и двух отрезков по 4+4+4=12.
Периметр - сумма длин всех сторон, он равен
4+12+2*8=32/см/
средняя линия трапеции равна полусумме оснований. т.е. (12+4)/2=
8/см/
См. Объяснение.
Объяснение:
1-й с шкалированной линейки).
1) Чертим произвольный отрезок.
2) Измеряем длину отрезка (L).
3) Решаем уравнение:
2х + 6х = L
x = L/8.
4) От начала отрезка откладываем:
2х = 2 * (L/8) = L/4 - это и будет точка, разбивающая отрезок в отношении: 2 : 6.
2-й с циркуля и нешкалированной линейки).
1) Чертим произвольный отрезок.
2) Из концов отрезка, раствором циркуля, превышающим половину длины отрезка, делаем по 2 засечки (сверху и снизу).
3) Прикладываем линейку к точкам пересечения засечек и проводим линию, пересекающую отрезок, - это середина отрезка.
4) Аналогично делим пополам, левую половину отрезка и полученную точку отмечаем как границу, которая делит отрезок в отношении 2:6, или, что одно и то же, - 1:3.