1.Чи симетричні точки А(–2; 1) та В(2; 3) відносно точки С(0; 2)? *
а)Так
б)Ні
2.Оберіть яке з кіл симетричне колу (x – 2)² + y² = 0 відносно початку координат. *
а)(x – 2)² – y² = 0
б)x² + (y + 2)² = 0
в)(x + 2)² + y² = 0
г)x² + (y – 2)² = 0
3.Серед точок А(–3; 2), В(–1; 3), С(1; 3), D(3; –2) укажіть пару точок, які симетричні відносно початку координат? *
а)С(3; 2)
б)А(–3; 2)
в)D(3; –2)
г)В(–1; 3)
4.Чи симетричні точки А(–5; –2) та В(3; –3) відносно точки С(1; 2,5)? *
а)Так
б)Ні
5.Знайдіть координати точки, яка буде центром симетрії для точок А(0; 6) та В(–1; 6). *
а)(–0,5; 6)
б)(–0,5; 12)
в)(–1; 6)
г)(0,5; –6)
6.Точки А(–2; y) та В(x; 5) симетричні відносно точки О(0; –1). Знайдіть x, y. *
а)x = 2; y = 3
б)x = 2; y = –7
в)x = –2; y = –3
г)x = –2; y = 7
7.Точки А(–1; y) та В(x; 3) симетричні відносно осі ординат. Знайдіть x, y. *
а)x = –1; y = –3
б)x = 1; y = –3
в)x = 1; y = 3
г)x = –1; y = 3
8.Серед точок А(–3; 2), В(–1; 3), С(1; 3), D(3; –2), F(–3; –2) укажіть пару точок, які симетричні відносно осі ординат? *
а)D(3; –2)
б)F(–3; –2)
в)А(–3; 2)
г)В(–1; 3)
д)С(3; 1)
9.Серед точок А(–3; 2), В(–1; 3), С(1; 3), D(3; –2), F(–3; –2) укажіть пару точок, які симетричні відносно осі абсцис? *
а)В(–1; 3)
б)А(–3; 2)
в)D(3; –2)
г)F(–3; –2)
д)С(3; 1)
10.Скільки осей симетрії має відрізок? *
а)0
б)1
в)Безліч
г)4
д)2
11.Чи буде центром симетрії точка перетину діагоналей прямокутника? *
а)Ні
б)Так
12.Чи буде центром симетрії точка перетину діагоналей трапеції? *
а)Так
б)Ні
По теореме косинусов составим 3 уравнения, выразив основания "а" через боковые стороны и угол при вершине.
а² = 3²+4²-2*3*4*cosα = 25 - 24*cosα
a² = 4²+5²-2*4*5*cosβ = 41 - 40*cosβ
a² = 5²+3²-2*5*3*cosω = 34 - 30*cosω
Получаем 4 неизвестных: а, α, β и ω.
Поэтому добавляем четвёртое уравнение:
α + β + ω = 2π.
Ниже приведено решение системы этих уравнений методом итераций:
α градус α радиан cos α a² = a =
25 24 150.0020 2.6180 -0.8660 45.7850 6.7665
41 40 96.8676 1.6907 -0.1196 45.7830 6.7663
34 30 113.1304 1.9745 -0.3928 45.7848 6.7664.
С точностью до третьего знака получаем значение стороны равностороннего треугольника, равной 6,766 единиц.
ответ:Сумма углов,прилежащих к одной боковой стороне трапеции равна 180 градусов
Если угол D равен 60 градусов,то угол С равен
<С=180-60=120 градусов
Диагональ АС отсекла от трапеции равнобедренный треугольник(АВ=ВС) ,а углы при основании АС равны между собой
<ВАС=<ВСА=120-90=30 градусов
<В=180-30•2=120 градусов,тогда
<А=180-120=60 градусов
Вывод-трапеция равнобедренная,т к углы при каждом основании равны между собой
Номер 2
Углы при боковых сторонах трапеции в сумме равны 180 градусов
Трапеция прямоугольная
<S=<M=180-90=90 градусов
Диагональ отсекла от трапеции равнобедренный треугольник,углы при основании которого равны между собой
<RMK=<К=(180-50):2=65 градусов
<R=180-65=115 градусов
Объяснение: