1. через вершину В ромба ABCD проведена прямая ВМ, перпендикулярная плоскости ромба. Найдите расстояние от точки М до прямой АС,если МВ=12см, DC=16см, АС=20см.
2. Точка F находится на расстоянир от каждой вершины квадрата ABCD, сторона которого равна 10 см. Найдите расстояние от точки F до плоскости квадрата.
3. Через вершину А прямоугольника ABCD к его плоскости проведен перпендикуляр АК. точка К удалена от соороны ВС на 15см. найдите расстояние от точки К до сторонф СD, если BD= см, АК=12см
Общая хорда двух пересекающихся кругов является стороной правильного треугольника, вписанного в один круг, и стороной квадрата, вписанного в другой круг. Длина этой хорды равна a. Найдите расстояние между центрами окружностей, если они лежат по разные стороны хорды.
Обозначим центр окружности с вписанным треугольником О, центр второй - О1.
Стороны треугольника и квадрата равны а.
Искомое расстояние равно сумме расстояний ОН - от точки пересечения медиан треугольника,- до хорды- и НО1 - от хорды до точки пересечения диагоналей квадрата.
ОН равно радиусу окружности, вписанной в правильный треугольник, т.е.1/3 его высоты.
Высота =а√3/2. ОН= а√3/6
Расстояние от хорды до О1 равно половине стороны квадрата, т.е.
НО1=а/2
Две хорды и диаметр образуют прямоугольный треугольник.
Обозначим один катет х, второй (х + 4).
По Пифагору 20² = х² + (х + 4)².
400 = х² + х² + 8х + 16,
2х² + 8х - 384 = 0 или, сократив на 2, получаем квадратное уравнение:
х² + 4х - 192 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=4^2-4*1*(-192)=16-4*(-192)=16-(-4*192)=16-(-768)=16+768=784;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√784-4)/(2*1)=(28-4)/2=24/2=12;x₂=(-√784-4)/(2*1)=(-28-4)/2=-32/2=-16 отрицательное значение не принимаем.
ответ: одна хорда равна 12 см,
вторая равна 12 + 4 = 16 см.