1) биссектриса угла при основании равнобедренного треугольника пересекает боковую сторону под углом, равным углу при основании.определите углы данного треугольника 2) докажите: -если биссектрисы двух углов треугольника образуют при пересечении угол 135*, то этот треугольник - прямоугольный - внешний угол треугольника в два раза больше острого угла между биссектрисами углов, не смежных с ним ! заранее
Угол при вершине b.
Биссектриса разбивает угол при основании на два угла a/2.
И она пересекает сторону под углом α. Получается треугольник ABD, у которого углы равны a, a, a/2.
a + a + a/2 = 180°
2a + 2a + a = 360°
5a = 360°
a = 360°/5 = 72°
b = 180° - a - a = 180° - 72° - 72° = 36°.
ответ: 72°, 72°, 36°.
2) а) Пусть две биссектрисы выходят из основания треугольника.
Тогда основание и биссектрисы образуют маленький треугольник, у которого тупой угол 135°. Тогда сумма двух остальных углов равна
180° - 135° = 45°.
Но ведь эти углы - есть половины углов большого треугольника.
Значит, эти два угла большого треугольника в сумме равны 2*45° = 90°.
Значит, третий угол большого треугольника равен 90°, то есть прямой.
Таким образом, большой треугольник - прямоугольный.
б) Пусть острый угол пересечения биссектрис равен а, тогда тупой 180°-а.
Значит, сумма углов в маленьком треугольнике
b1 + b2 = 180° - (180° - а) = а.
Но эти маленькие углы есть половины от углов большого треугольника.
Поэтому сумма двух углов большого треугольника равна 2а.
2*b1 + 2*b2 = 2a
Значит, третий угол большого треугольника равен 180° - 2а.
А внешний угол к этому углу равен, соответственно, 2а.
То есть вдвое больше, чем острый угол а между биссектрисами.
Оба случая - а) и б) - показаны на 2 рисунке.
Для случая а) тупой угол между биссектрисами 180° - a = 135°.