АМ=МС-медиана делит сторону на которую опущена на две равные части
МД-общая сторона
В равнобедренном треугольнике медиана,если она опущена из вершины на основание,является одновременно и высотой,а высота-перпендикуляр и образует прямые углы
Угол АМД равен углу ДМС и каждый из них равен 90 градусов
Исходя из вышеизложенного мы можем утверждать,что треугольник АДМ равен треугольнику ДМС по первому признаку равенства треугольников-если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника,то эти треугольники равны между собой
ответ:Рассмотрим треугольники АМВ и СМД
АМ=МС-медиана делит сторону на которую опущена на две равные части
МД-общая сторона
В равнобедренном треугольнике медиана,если она опущена из вершины на основание,является одновременно и высотой,а высота-перпендикуляр и образует прямые углы
Угол АМД равен углу ДМС и каждый из них равен 90 градусов
Исходя из вышеизложенного мы можем утверждать,что треугольник АДМ равен треугольнику ДМС по первому признаку равенства треугольников-если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника,то эти треугольники равны между собой
Объяснение:
ответ: 1,6 см; 3,6 см; 5,2 см.
Объяснение:
Назовём треугольник АВС; угол С=90°, АС:СВ=3:2, АН=ВН+2.
Примем ВН=х, АН=х+2.
Каждый катет есть среднее пропорциональное между гипотенузой и проекцией катета на гипотенузу: ⇒
АС²=АВ•АН=(х+х+2)•(х+2)=2•(х+1)•(х+2)
ВС²=АВ•ВН=(х+х+2)•х=2•(х+1)•х
По условию АС:ВС=3:2 => АС²:ВС²=3²:2²= 9:4
Подставим найденные выше значения катетов в пропорцию:
2•(х+1)•(х+2):2•(х+1)•х=9:4⇒
(х+2):х=9:4
5х=8 ⇒
BH=х=1,6
AН=1,6+2=3,6 см
АВ=2х+2=5,2 см
АС=√(5,2•3,6)=6√52
BC=√(5,5•1,6)=4√52