Предпочтительнее тот при использовании которого на подъём придётся затратить меньшее время. Пусть l м - длина эскалатора, тогда при использовании первого Антону придётся преодолеть расстояние 3l/4 м со скоростью 3-1=2 м/с. Отсюда время подъёма t1=(3l/4)/2=3l/8 с. При использовании второго Антон сначала пробежит вниз по эскалатору расстояние l/4 м со скоростью 3+1=4 м/с, на что уйдёт время t2=(l/4)/4=l/16 с. Затем Антон пробежит вверх по эскалатору расстояние l с той же скоростью 4 м/с, на что уйдёт время t3=l/4 с. Таким образом, при использовании второго время до подъёма составит t2+t3=l/16+l/4=5l/16 с. Так как 3l/8=6l/16>5l/16, то t1>t2+t3. Значит, предпочтительнее второй
Vср = S / t.
Рассмотрим первую половину пути:
S₁ = (S/2)
t₁ = S₁/V₁ = S / (2*V₁) = S / 20 = (1/20)*S = 0,05*S ч
Рассмотрим вторую половину пути.
Оставшийся путь
S₂ = (S/2)
Оставшееся время t₂ разобьем на 3 равных промежутка по (t₂ /3) часа
Путь на первой трети остатка:
S₂₁ = V₂₁*(t₂/3) = (20/3)*t₂
Путь на второй трети остатка:
S₂₂ = 0 (ремонт!)
Путь на последней трети остатка:
S₂₃ = V₂₃*(t₂/3) = (5/3)*t₂
Собираем
S₂ = S₂₁+S₂₂+S₂₃ = (20/3)*t₂ + 0 + (5/3)*t₂ = (25/3)*t₂
(S/2) = (25/3)*t₂
t₂ = (3/50)*S = 0,06*S ч
Общее время:
t = t₁ +t₂ = 0,05*S + 0,06*S = 0,11*S
Средняя скорость:
Vcp = S / (0,11*S) = 1 / 0,11 ≈ 9 км/ч