Залежність кута повороту радіуса колеса від часу має вигляд: @=10-5t2 + 2t3. Знайти в кінці першої секунди обертання кутову швидкість колеса, а також лінійну швидкість і повне прискорення точки, яка лежить на ободі колеса. Радіус колеса 2cм
Закон Кулона — это закон о взаимодействии точечных электрических зарядов.
Был открыт Кулоном в 1785 г. Проведя большое количество опытов с металлическими шариками, Шарль Кулон дал такую формулировку закона:
Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме направлена вдоль прямой, соединяющей заряды, прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними. Важно отметить, что для того, чтобы закон был верен, необходимы: 1.точечность зарядов — то есть расстояние между заряженными телами много больше их размеров. 2.их неподвижность. Иначе уже надо учитывать дополнительные эффекты: возникающее магнитное поле движущегося заряда и соответствующую ему дополнительную силу Лоренца, действующую на другой движущийся заряд. 3.взаимодействие в вакууме. Однако, с некоторыми корректировками закон справедлив также для взаимодействий зарядов в среде и для движущихся зарядов.
В векторном виде в формулировке Ш. Кулона закон записывается следующим образом:
где F1,2— сила, с которой заряд 1 действует на заряд 2; q1,q2 — величина зарядов; — радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами — r12); k — коэффициент пропорциональности. Таким образом, закон указывает, что одноименные заряды отталкиваются (а разноименные – притягиваются) .
Происходит теплообмен между двумя телами (алюминий при температуре t1 и лед при температуре t2 = 0 °C). Так как куб должен погрузиться в лед, а лед расплавится не весь, то конечная температура системы должна быть равна температуре льда, т.е. t3 = t2 = 0 °C. Запишем уравнение теплового баланса для двух тел: Q1 + Q2 = 0, где Q1 = ca∙ma∙(t2 – t1) — количество теплоты, которое отдает куб массой ma (Q1 < 0, т.к. тело отдает тепло), ma = ρa∙Va, Va — объем куба. Лед взят при температуре плавления, поэтому он сразу начинает плавиться. Тогда Q2 = m2∙λ (Q2 > 0, т.к. тело получает тепло), m2 = ρ2∙V2 — масса расплавившегося льда. Так как куб полностью погрузится в лед, то Va ≥ V2 (будем искать минимальную температура, при которой Va = V2). Тогда ca∙ ρa∙Va∙(t2 – t1) + ρ2∙Va∙λ = 0, t1=t2+ρ2⋅λca⋅ρa, t1 = 135
Был открыт Кулоном в 1785 г. Проведя большое количество опытов с металлическими шариками, Шарль Кулон дал такую формулировку закона:
Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме направлена вдоль прямой, соединяющей заряды, прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.
Важно отметить, что для того, чтобы закон был верен, необходимы:
1.точечность зарядов — то есть расстояние между заряженными телами много больше их размеров.
2.их неподвижность. Иначе уже надо учитывать дополнительные эффекты: возникающее магнитное поле движущегося заряда и соответствующую ему дополнительную силу Лоренца, действующую на другой движущийся заряд.
3.взаимодействие в вакууме.
Однако, с некоторыми корректировками закон справедлив также для взаимодействий зарядов в среде и для движущихся зарядов.
В векторном виде в формулировке Ш. Кулона закон записывается следующим образом:
где F1,2— сила, с которой заряд 1 действует на заряд 2; q1,q2 — величина зарядов; — радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами — r12); k — коэффициент пропорциональности. Таким образом, закон указывает, что одноименные заряды отталкиваются (а разноименные – притягиваются) .
Объяснение:
Происходит теплообмен между двумя телами (алюминий при температуре t1 и лед при температуре t2 = 0 °C). Так как куб должен погрузиться в лед, а лед расплавится не весь, то конечная температура системы должна быть равна температуре льда, т.е. t3 = t2 = 0 °C. Запишем уравнение теплового баланса для двух тел: Q1 + Q2 = 0, где Q1 = ca∙ma∙(t2 – t1) — количество теплоты, которое отдает куб массой ma (Q1 < 0, т.к. тело отдает тепло), ma = ρa∙Va, Va — объем куба. Лед взят при температуре плавления, поэтому он сразу начинает плавиться. Тогда Q2 = m2∙λ (Q2 > 0, т.к. тело получает тепло), m2 = ρ2∙V2 — масса расплавившегося льда. Так как куб полностью погрузится в лед, то Va ≥ V2 (будем искать минимальную температура, при которой Va = V2). Тогда ca∙ ρa∙Va∙(t2 – t1) + ρ2∙Va∙λ = 0, t1=t2+ρ2⋅λca⋅ρa, t1 = 135