Это графики изменения координаты тела со временем.
Возьмем 1 тело. Координата уменьшается, тело движется против оси координат. Чтобы найти скорость движения, надо взять промежуток времени и посмотреть пройденный за это время путь.
Если взять первые 10 с, то координата была 300 м, а стала 250 м.
V1=(250 - 300)/10=-50/10=-5 м/с
Возьмем 20 с. V1=(200 - 300)/20= - 5 м/с. Движение равномерное с постоянной скоростью (-5) м/с. Минус показывает, что тело движется против оси координат из точки 300 м к началу отсчета.
Второй график. Координата увеличивается, тело движется вдоль оси координат. Найдем скорость. Возьмем 20 с. За это время тело из точки 150 м перешло в точку 200 м.
V2=(200 - 150)/20=2,5 м/с.
Тело из точки 150 м движется вдоль оси координат со скоростью
2,5 м/с.
Точка пересечения показывает, что оба тела через 20 с после начала наблюдения за телами находились в точке 200 м от начала отсчета. Если у них была одинаковая координата, значит они встретились. После встречи стали удаляться друг от друга.
Р = 20 кН = 20000 Н. ρл = 900 кг/м^3. ρв = 1000 кг/м^3. Vнад водой - ? Fарх - ? На льдину действуют две силы: сила тяжести m * g, вертикально вниз, и выталкивающая сила Архимеда Fарх, вертикально вверх. Так как льдина плавает то эти силы равны между собой: m*g = Fарх. Вес тела Р равен силе тяжести m*g. Р = m *g. Fарх = 20000 Н. Массу тела m распишем через плотность льда ρл и объем тела V: m = ρл * V. m *g = ρл * V *g. Выталкивающая сила Архимеда определяется формулой: Fарх = ρв *g* Vпог. Где ρв - плотность жидкости, в которое погружено тело, g - ускорение свободного падения, Vпог - объем погруженной части тела в жидкость. ρл * V *g = ρв *g* Vпог. ρл * V = ρв * Vпог. Vпог / V = ρл / ρв. Vпог / V = 900 кг/м^3 / 1000 кг/м^3 = 0,9. Под водой находится 9/10 частей или 90 % всего объема льдины. Vпог = 0,9 * V. Vнад водой = V - Vпог = V - 0,9 * V = 0,1 * V. ответ: на поверхности находится 1/10 или 10 % льдины.
Это графики изменения координаты тела со временем.
Возьмем 1 тело. Координата уменьшается, тело движется против оси координат. Чтобы найти скорость движения, надо взять промежуток времени и посмотреть пройденный за это время путь.
Если взять первые 10 с, то координата была 300 м, а стала 250 м.
V1=(250 - 300)/10=-50/10=-5 м/с
Возьмем 20 с. V1=(200 - 300)/20= - 5 м/с. Движение равномерное с постоянной скоростью (-5) м/с. Минус показывает, что тело движется против оси координат из точки 300 м к началу отсчета.
Второй график. Координата увеличивается, тело движется вдоль оси координат. Найдем скорость. Возьмем 20 с. За это время тело из точки 150 м перешло в точку 200 м.
V2=(200 - 150)/20=2,5 м/с.
Тело из точки 150 м движется вдоль оси координат со скоростью
2,5 м/с.
Точка пересечения показывает, что оба тела через 20 с после начала наблюдения за телами находились в точке 200 м от начала отсчета. Если у них была одинаковая координата, значит они встретились. После встречи стали удаляться друг от друга.
ρл = 900 кг/м^3.
ρв = 1000 кг/м^3.
Vнад водой - ?
Fарх - ?
На льдину действуют две силы: сила тяжести m * g, вертикально вниз, и выталкивающая сила Архимеда Fарх, вертикально вверх. Так как льдина плавает то эти силы равны между собой: m*g = Fарх.
Вес тела Р равен силе тяжести m*g.
Р = m *g.
Fарх = 20000 Н.
Массу тела m распишем через плотность льда ρл и объем тела V: m = ρл * V.
m *g = ρл * V *g.
Выталкивающая сила Архимеда определяется формулой: Fарх = ρв *g* Vпог. Где ρв - плотность жидкости, в которое погружено тело, g - ускорение свободного падения, Vпог - объем погруженной части тела в жидкость.
ρл * V *g = ρв *g* Vпог.
ρл * V = ρв * Vпог.
Vпог / V = ρл / ρв.
Vпог / V = 900 кг/м^3 / 1000 кг/м^3 = 0,9.
Под водой находится 9/10 частей или 90 % всего объема льдины.
Vпог = 0,9 * V.
Vнад водой = V - Vпог = V - 0,9 * V = 0,1 * V.
ответ: на поверхности находится 1/10 или 10 % льдины.