Решим задачу с энергетического подхода. Для начала запишем уравнение динамики. На тело действуют горизонтальная сила тяги F и сила трения Fтр, которые противоположны по направлению. Равнодействующая направлена туда же, куда и ускоряющая сила тяги F:
F + (-Fтр) = ma
F - Fтр = ma (1)
Выразим ускорение через кинематическую формулу скорости:
а = (v - v0)/t - учитывая, что начальная скорость равна нулю (тело покоилось), будет:
а = v/t - подставим в (1):
F - Fтр = mv/t - выразим скорость v и найдём её, учитывая, что Fтр = μmg:
Теперь применим теорему об изменении кинетической энергии, которая гласит о том, что сумма работ внешних сил, действующих на тело, равна изменению кинетической энергии тела:
S(A) = dEk = Ek2 - Ek1 (2)
Работа силы тяги и силы трения:
А(F) = F*s
А(-Fтр) = -μmg*s
Изменение кинетической энергии равно:
Ek2 - Ek1 = mv²/2 - mv0²/2 = mv²/2 - 0 = mv²/2
Тогда, согласно (2):
A(F) + A(-Fтр) = Ek2
F*s + (-μmg*s) = mv²/2
s*(F - μmg) = mv²/2
s = mv²/(2*(F - μmg)) = 1*6²/(2*(4 - 0,1*1*10)) = 36/6 = 6 м
См. рисунок. Получаются два прямоугольных треугольника, которые являются подобными по трём углам. Прилежащий катет большого треугольника обозначим как (L - x), а прилежащий малого - как х, тогда составим пропорцию из отношений катетов:
L/(L - x) = (L/2)/x
L/(L - x) = L/(2x) | * 2x*(L - x)
2Lx = L*(L - x) | : L
2x = L - x
3x = L
x = L/3
Теперь выразим гипотенузу каждого из треугольников. Затем сложим их: сумма будет являться перемещением:
Дано:
m = 1 кг
t = 2 c
F = 4 Н
μ = 0,1
g = 10 м/с²
v0 = 0 м/с
s - ?
Решим задачу с энергетического подхода. Для начала запишем уравнение динамики. На тело действуют горизонтальная сила тяги F и сила трения Fтр, которые противоположны по направлению. Равнодействующая направлена туда же, куда и ускоряющая сила тяги F:
F + (-Fтр) = ma
F - Fтр = ma (1)
Выразим ускорение через кинематическую формулу скорости:
а = (v - v0)/t - учитывая, что начальная скорость равна нулю (тело покоилось), будет:
а = v/t - подставим в (1):
F - Fтр = mv/t - выразим скорость v и найдём её, учитывая, что Fтр = μmg:
v = (F - Fтр)*t/m = (F - μmg)*t/m = (4 - 0,1*1*10)*2/1 = (4 - 1)*2 = 6 м/с
Теперь применим теорему об изменении кинетической энергии, которая гласит о том, что сумма работ внешних сил, действующих на тело, равна изменению кинетической энергии тела:
S(A) = dEk = Ek2 - Ek1 (2)
Работа силы тяги и силы трения:
А(F) = F*s
А(-Fтр) = -μmg*s
Изменение кинетической энергии равно:
Ek2 - Ek1 = mv²/2 - mv0²/2 = mv²/2 - 0 = mv²/2
Тогда, согласно (2):
A(F) + A(-Fтр) = Ek2
F*s + (-μmg*s) = mv²/2
s*(F - μmg) = mv²/2
s = mv²/(2*(F - μmg)) = 1*6²/(2*(4 - 0,1*1*10)) = 36/6 = 6 м
ответ: 6 м.
Дано:
L1 = L2 = L = 4 км
L3 = L/2 = 2 км
s_o, L_o - ?
См. рисунок. Получаются два прямоугольных треугольника, которые являются подобными по трём углам. Прилежащий катет большого треугольника обозначим как (L - x), а прилежащий малого - как х, тогда составим пропорцию из отношений катетов:
L/(L - x) = (L/2)/x
L/(L - x) = L/(2x) | * 2x*(L - x)
2Lx = L*(L - x) | : L
2x = L - x
3x = L
x = L/3
Теперь выразим гипотенузу каждого из треугольников. Затем сложим их: сумма будет являться перемещением:
d1² = L² + (L - x)² - квадрат гипотенузы большого треугольника => d1 = √(L² + (L - x)²)
d2² = (L/2)² + x² - квадрат гипотенузы малого треугольника => d2 = √((L/2)² + x²)
s_o = d1 + d2 = √(L² + (L - x)²) + √((L/2)² + x²)
Подставляем выражение x:
s_o = √(L² + (L - L/3)²) + √((L/2)² + (L/3)²) = √(L² + (2L/3)²) + √(L²/4 + L²/9) = √(L² + 4L²/9) + √(9L²/36 + 4L²/36) = √(9L²/9 + 4L²/9) + √(13L²/36) = √(13L²/9) + √13*L/6 = √13*L/3 + √13*L/6 = 2√13*L/6 + √13*L/6 = 3√13*L/6 = √13*L/2 = √13*4/2 = 2√13 = 7,211... = 7,2 км
Общий путь будет просто суммой всех расстояний:
L_o = L1 + L2 + L3 = 4 + 4 + 2 = 10 км
ответ: 7,2 км; 10 км.