В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
luzgina11
luzgina11
27.07.2022 01:43 •  Физика

Вирішіть 8 клас фізика 100б не брешу

Показать ответ
Ответ:
elvirravel
elvirravel
03.01.2020 20:57

Пусть изначальное сопротивление проводника R.

Он состоит из трёх последовательно соединённых частей, а значит сопротивление каждой из этих частей равно R/3.

При параллельном соединении одинаковых (!) сопротивлений общее сопротивление такого участка равно отношению сопротивления одной ветки на количество ветвей в соединении. То есть, r = (R/3)/3 = R/9

Найдем , во сколько раз изменилось сопротивление:

r/R = (R/9) / R = 1/9 - сопротивление изменилось (увеличилось) в 1/9 раз, то есть уменьшилось в 9 раз.

ответ: сопротивление уменьшилось в 9 раз
0,0(0 оценок)
Ответ:
Zhenkyaaaa
Zhenkyaaaa
10.02.2022 02:04
Рассмотрим подзадачу слева. Разложим компоненты скорости первого шарика на касательную и нормальную по отношению к левой грани составляющие. Соударение меняет знак нормальной составляющей, оставляя касательную неизменной.

Пока шарик летит от первого соударения до второго, он полностью теряет касательную составляющую. Поэтому он, во второй раз падая на призму строго нормально, отражается в противоположном направлении и проходит свою траекторию в обратном направлении.

Найдем при каком угле это возможно. Введем систему координат, связав начало координат с ребром призмы, лежащим на столе, ось икс направим вдоль грани вверх, ось игрек - перпендикулярно грани, наружу. Начало координат лежит пусть на столе. Пусть острый угол при основании призмы равен альфа, тогда

y(t) = v_{0y}t-(g\cos\alpha) t^2/2\\ v_x(t) = v_{0x}-(g\sin\alpha)t

Где v0x и v0y - касательная и нормальная составляющая скорости шарика ПОСЛЕ первого удара. Нам нужно, чтобы при каком-то τ обе вышенаписанные функции занулились  (шарик ударяется о призму в тот момент, когда полностью погашена касательная компонента). Имеем

v_{0y}\tau-(g\cos\alpha) \tau^2/2 = 0\\ v_{0x}-(g\sin\alpha)\tau = 0\\\\ \tau = 2v_{0y}/(g\cos\alpha) = v_{0x}/(g\sin\alpha)\\ 2(v_0\sin\alpha)/(g\cos\alpha) = v_0\cos\alpha/(g\sin\alpha)\\ 2\tan^2\alpha = 1\\ \alpha = \arctan(1/\sqrt{2})

Левый угол найден.

Рассмотрим подзадачу справа. Ее удобнее решать "с конца", воспользовавшись принципом обратимости в механике. Итак, пусть шарик падает сверху на призму, имея какую-то начальную скорость. Опять-таки, упругое соударение изменит его нормальную проекцию скорости, но не касательную. Введем ось икс вдоль грани вниз, игрек перпендикулярно грани наружу, начало координат в месте падения шарика. Пусть острый угол при основании равен бета. Имеем

v_x(t) = v_{0x}+gt\sin\beta\\
v_y(t) = v_{0y}-gt\cos\beta\\
y(t) = v_{0y}t-(g\cos\beta)t^2/2

Опять-таки, время полета найдется из условия y(t) = 0. При этом мы точно знаем, что проекции скоростей в конце полета должны быть такими, чтобы после второго отражения шарик поехал горизонтально влево. А это произойдет когда скорость в конце будет направлена под углом бета к введенной оси икс. Итак

\tau = 2v_{0y}/(g\cos\beta)\\
v_x(\tau) = v_{0x}+\frac{2v_{0y}}{\cos\beta}\sin\beta\\
v_y(t) = v_{0y}-2v_{0y} = -v_{0y}\\
v_x(\tau)/(-v_y(\tau)) = \cot\beta\\
\frac{v_{0x}}{v_{0y}} + 2\tan\beta = \cot\beta\\
\tan\beta+2\tan\beta = \cot\beta\\
3\tan^2\beta = 1\\
\beta = \arctan(1/\sqrt{3})

Ну угол при вершине найдем как 

\gamma = \pi-\alpha-\beta = \pi-\arctan(1/\sqrt{2})-\arctan(1/\sqrt{3})
0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота