fт=maц(1) силу тяготения найдем из закона всемирного тяготения, учитывая, что высота орбита мала, т.е. она является околоземной: fт=gmmr2(2) центростремительное ускорение спутника, движущегося со скоростью υ1, равно: aц=υ21r(3) в равенство (1) подставим выражения (2) и (3): gmmr2=mυ21r значит первую космическую скорость можно определять по такой формуле: υ1=gmr√ по условию r=2r3 и m=2mз, поэтому: υ1=g2mз2rз√=gmзrз√ в принципе после получения этой формулы можно было сказать, что первая космическая скорость на данной планете такая же, как и у земли. но мы «добьём» до конца. домножим и поделим дробь под корнем на r3, тогда: υ1=gmзr2з⋅rз⎷ выражение gmзr2з равно ускорению свободного падения g вблизи поверхности земли, в итоге имеем: υ1=grз−−−√ напомним, что радиус земли равен 6,4·106 м, поэтому численный ответ равен: υ1=10⋅6,4⋅106√=8000м/с
ответ:
fт=maц(1) силу тяготения найдем из закона всемирного тяготения, учитывая, что высота орбита мала, т.е. она является околоземной: fт=gmmr2(2) центростремительное ускорение спутника, движущегося со скоростью υ1, равно: aц=υ21r(3) в равенство (1) подставим выражения (2) и (3): gmmr2=mυ21r значит первую космическую скорость можно определять по такой формуле: υ1=gmr√ по условию r=2r3 и m=2mз, поэтому: υ1=g2mз2rз√=gmзrз√ в принципе после получения этой формулы можно было сказать, что первая космическая скорость на данной планете такая же, как и у земли. но мы «добьём» до конца. домножим и поделим дробь под корнем на r3, тогда: υ1=gmзr2з⋅rз⎷ выражение gmзr2з равно ускорению свободного падения g вблизи поверхности земли, в итоге имеем: υ1=grз−−−√ напомним, что радиус земли равен 6,4·106 м, поэтому численный ответ равен: υ1=10⋅6,4⋅106√=8000м/с
источник:
объяснение:
Так как период колебания обратно пропорционален
квадратному корню из ускорения силы тяжести, то
это ускорение на Луне в 2.36*2.36=5.57 раз меньше,
чем на Земле.
Значит, вес всякого тела на Луне в 5.57 раз меньше,
чем на Земле.
Теперь вспомним, что по формуле Ньютона сила притяжения
равна: F=GmM/R^2, где G - постоянная тяготения, m - масса
тела, M - масса притягивающего центра (здесь - Земли
или Луны) , r - расстояние от тела до этого центра.
Для Земли F1=GmM1/(r1)^2, r1=6400,
для Луны F2=GmM2/(r2)^2, r2=?
Отсюда:
M1/M2*(r2/r1)^2=F1/F2=5.57,
81*(r2^)2=(r1)^2*5.57, (r2)^2=(6400)^2*5.57/81,
r2=6400*2.36/9=1678 км.
На самом деле немного больше (1737 км)