Линии магнитной индукции - линии, касательные к которым направлены также как и вектор магнитной индукции в данной точке поля. Магнитные поля, так же как и электрические, можно изображать графически при линий магнитной индукции. Через каждую точку магнитного поля можно провести линию индукции. Так как индукция поля в любой точке имеет определённое направление, то и направление линии индукции в каждой точке данного поля может быть только единственным, а значит, линии магнитного поля, так же как и электрического поля, линии индукции магнитного поля прочерчивают с такой густотой, чтобы число линий, пересекающих единицу поверхности, перпендикулярной к ним, было равно (или пропорционально) индукции магнитного поля в данном месте. Поэтому, изображая линии индукции, можно наглядно представить, как меняется в пространстве индукция, а следовательно, и напряжённость магнитного поля по модулю и направлению.
Для начала приведем скорости к системе СИ V=54 км/ч=54000 м/3600c=15м/с U=72 км/ч=72000 м/3600c=20м/с
квадрат расстояния между автомобилями вычисляем по формуле Пифагора d²=(L-Vt)²+(L-Ut)² найдем производную от d² (d²)'=2(L-Vt)(-V)+2(L-Ut)(-U) минимальное d² (и соответственно минимальное d) будет в момент времени t, когда (d²)'=0 2(L-Vt)(-V)+2(L-Ut)(-U)=0 V(L-Vt)+U(L-Ut)=0 VL-V²t+UL-U²t=0 L(V+U)=t(V²+U²)
V=54 км/ч=54000 м/3600c=15м/с
U=72 км/ч=72000 м/3600c=20м/с
квадрат расстояния между автомобилями вычисляем по формуле Пифагора
d²=(L-Vt)²+(L-Ut)²
найдем производную от d²
(d²)'=2(L-Vt)(-V)+2(L-Ut)(-U)
минимальное d² (и соответственно минимальное d) будет в момент времени t, когда (d²)'=0
2(L-Vt)(-V)+2(L-Ut)(-U)=0
V(L-Vt)+U(L-Ut)=0
VL-V²t+UL-U²t=0
L(V+U)=t(V²+U²)
t=450м *(15 м/c+20 м/c)/(15² м²/с²+20² м²/с²)=450 м/(225+400)м/с=25,2с
подставляем это значение t в формулу для d²
d²=(450м-15м/с * 25,2с)²+(450м-20м/с * 25,2с)²=8100 м²
d=90,0м