труба масою 2,1 т має довжину 16 м і знаходиться на двох опорах які віддалені від кінців труби на відстані 4 м і 2 м. яку силу треба прикласти по черзі до кожного кінця труби, щоб підняти її за той чи інший кінець?
Ось Ox направим слева направо. Пусть цилиндр вращается так, что он начнёт катиться по доске направо. Значит, вначале движения по доске нижняя поверхность цилиндра при трении о доску будет двигаться налево. При этом возникнет сила трения Fтр, приложенная к цилиндру и направленная против движения нижней поверхности цилиндра, т.е. направо.
Таким образом, с учётом третьего закона Ньютона, сила трения будет разгонять уилиндр направо и разгонять доску налево.
Поскольку изначально общий импульс был равен нулю, то значит и конечный импульс равень нулю. Так что: MV = mv, где V – модуль скорости доски, а v – модуль скорости центра масс цилиндра.
Отсюда: v = VM/m ; [1]
А скорость центра масс цилиндра относительно доски составит: V+v = V + VM/m = V ( 1 + M/m ) ;
Для отсутствия проскальзывания, относительная скорость цилиндра должна соотноситься с вращением ω, как: [V+v]/R = ω ; ω = [V/R] ( 1 + M/m ) ; [2]
По второму закону Ньютона в приложении к доске: Fтр = Ma , где a – ускорение доски ;
По второму закону Ньютона во вращательной форме в приложении к цилиндру: RFтр = –[mR²/2]ω' , где mR²/2 – момент инерции цилиндра ; знак минус учитывает замедление вращения ;
Объединяя последние равенства, получаем: RMa = –[mR²/2]ω' ; 2[M/m] dv/dt = –R dω/dt ; 2[M/m]dv = –R dω ; 2[M/m](V–0) = –R(ω–ωo) , подставляем сюда [2] : 2VM/m = R ωo – V ( 1 + M/m ) ; 2VM/m + V ( 1 + M/m ) = R ωo ; V ( 2M/m + 1 + M/m ) = R ωo ; V ( 3M/m + 1 ) = R ωo ;
V = R ωo / [ 3M/m + 1 ] – это v2 по условию,
из [1] : v = R ωo / [ 3 + m/M ] – это v1 по условию.
Выберем положительное направление скорости - вправо выберем положительное направление угловой скорости по часовой стрелке очевидно что выполняется закон сохранения импульса поэтому m*v1+M*v2=0 в отсутствии проскальзывания выполняется кинематическая связь w=(v1-v2)/R изменение момента импульса диска пошло на изменение момента импульса доски J*w0=J*w-M*v2*R J=mR^2/2
Таким образом, с учётом третьего закона Ньютона, сила трения будет разгонять уилиндр направо и разгонять доску налево.
Поскольку изначально общий импульс был равен нулю, то значит и конечный импульс равень нулю. Так что:
MV = mv, где V – модуль скорости доски, а v – модуль скорости центра масс цилиндра.
Отсюда: v = VM/m ; [1]
А скорость центра масс цилиндра относительно доски составит:
V+v = V + VM/m = V ( 1 + M/m ) ;
Для отсутствия проскальзывания, относительная скорость цилиндра должна соотноситься с вращением ω, как:
[V+v]/R = ω ;
ω = [V/R] ( 1 + M/m ) ; [2]
По второму закону Ньютона в приложении к доске:
Fтр = Ma , где a – ускорение доски ;
По второму закону Ньютона во вращательной форме в приложении к цилиндру:
RFтр = –[mR²/2]ω' , где mR²/2 – момент инерции цилиндра ; знак минус учитывает замедление вращения ;
Объединяя последние равенства, получаем:
RMa = –[mR²/2]ω' ;
2[M/m] dv/dt = –R dω/dt ;
2[M/m]dv = –R dω ;
2[M/m](V–0) = –R(ω–ωo) , подставляем сюда [2] :
2VM/m = R ωo – V ( 1 + M/m ) ;
2VM/m + V ( 1 + M/m ) = R ωo ;
V ( 2M/m + 1 + M/m ) = R ωo ;
V ( 3M/m + 1 ) = R ωo ;
V = R ωo / [ 3M/m + 1 ] – это v2 по условию,
из [1] :
v = R ωo / [ 3 + m/M ] – это v1 по условию.
выберем положительное направление угловой скорости по часовой стрелке
очевидно что выполняется закон сохранения импульса поэтому
m*v1+M*v2=0
в отсутствии проскальзывания выполняется кинематическая связь
w=(v1-v2)/R
изменение момента импульса диска пошло на изменение момента импульса доски
J*w0=J*w-M*v2*R
J=mR^2/2
m*v1+M*v2=0
w=(v1-v2)/R
J*w0=J*w-M*v2*R
J=mR^2/2
v2=-m*v1/M
w=(v1+m*v1/M)/R
J*w0=J*w+M*m*v1/M*R
J=mR^2/2
v2=-m*v1/M
w=v1*(1+m/M)/R
w=w0-m*v1*R/J
J=mR^2/2
v2=-m*v1/M
v1*(1+m/M)/R=w0-m*v1*R/J
J=mR^2/2
v2=-m*v1/M
v1*(1+m/M+mR^2/J)/R=w0
J=mR^2/2
v2=-m*v1/M
v1=w0*R/(1+m/M+mR^2/J)=w0*R/(1+m/M+mR^2/(mR^2/2))=w0*R/(3+m/M)
v1=w0*R*M/(3M+m)
v2=-m*v1/M=-w0*R*m/(3*M+m)