Источниками производственного ультразвука являются генераторы ультразвуковых колебаний, используемых для технологических нужд, в медицине и научных исследованиях, а также производственное оборудование, имеющее в спектре и шума высокочастотные складов.
Генератор ультразвука состоит из источника тока высокой частоты и пьезоэлектрического или магнитострикционного преобразователя В производственной практике магнитострикционные преобразователи используются для генерации низкочастотного ультразвука, а пьезоэлектрические преобразователи позволяют получать ультразвук с частотой до 10 * Гц.
Ультразвуковое оборудование и приборы зависимости от частотной характеристики делятся на две основные группы:
1) аппараты, генерирующие низкочастотный ультразвук с частотой колебаний 10-100кГц;
2) оборудование, в котором используется высокочастотный ультразвук с частотой колебаний в пределах 100 кГц - 1000 МГц
Низкочастотный ультразвук широко используется для очистки деталей от масел, окалины и других загрязнений, котлов и теплообменных аппаратов от накипи и т др.
Ультразвук широко используется в системах очистки воздуха от пыли, копоти, химических веществ Он активизирует химические процессы, используется для химической обработки сверхтвердых и хрупких материалов - алмазов, стекла, керамики, ювелирных изделий, древесины и т иін.
Ультразвук оказывает воздействие на биологические объекты назад, его бактерицидное действие успешно используется в медицинской и пищевой промышленности
Ультразвук как лечебное средство используется в физиотерапии творит болеутоляющее, противовоспалительное и бактерицидное действие, стимулирует действие нервной системы, улучшает кроветворение, усиливает защитные ре еакции организма, снижает артериальное давление и т ин.
высокочастотные ультразвуковые осуществляют дефектоскопию качества металлических и бетонных конструкций и других изделий, определяют дефекты сварных швов труб, котлов, строительных конструкций и т др.
Шаг 1. Мы ввели систему отсчета: 1) выбрали началом отсчета дерево, от которого начинал свое движение пешеход; 2) направили координатную ось вдоль дороги в направлении движения пешехода; 3) включили часы (секундомер) в момент начала движения тел.
Шаг 2. Были определены начальные координаты пешехода (xп0 = 0) и велосипедиста (xв0= 20 м).
Шаг 3. Используя введенную систему отсчета, мы определили значения скоростей движения пешехода (vп = 1 м/с) и велосипедиста (vв = -3 м/с).
Таким образом, первые три шага решения задачи не зависят от того, каким графическим или аналитическим) мы собираемся ее решать. Но уже следующий шаг будет отличаться от того, что мы делали при графическом решения.
Шаг 4 (аналитический). Запишем в аналитическом виде законы движения тел, учитывая известные данные. Поскольку в задаче движутся два тела (пешеход и велосипедист), то мы получаем два закона движения:
xп = 0 + 1 · t, xв = 20 - 3 · t.
Шаг 5 (аналитический). Представим в виде уравнения условие задачи – встречу велосипедиста и пешехода. Встреча двух тел означает, что положения тел в пространстве совпадут в некоторый момент времени t = tвстр, т. е. в этот момент времени совпадут их координаты
Объяснение:
Шаг 6 (аналитический). Запишем вместе полученные в шагах 4 и 5 выражения, присвоив каждому из них свои номер и название.
xп = xв. (3) (условие встречи пешехода и велосипедиста)
Шаг 7 (аналитический). Решение уравнений.
Для того чтобы найти значение времени t в интересующий нас момент встречи, воспользуемся условием встречи пешехода и велосипедиста – уравнением (3). Оно предполагает равенство координат двух тел. Подставим в него выражения для xп и xв из уравнений (1) и (2):
0 + 1 · t = 20 - 3 · t
Приведем подобные слагаемые и решим уравнение:
(1+3) · t = 20, t = 20/4 = 5 (с).
Таким образом, мы установили, что встреча пешехода и велосипедиста состоится через 5 с после начала движения.
Теперь определим координату точки, в которой состоится встреча. Для этого подставим полученное значение момента встречи tвстр = 5 с в закон движения пешехода – уравнение (1):
xп = 0 + 1 · tвстр = 0 + 1 · 5 = 5 (м).
Это означает, что в момент встречи координата пешехода будет равна xп = 5. Следовательно, встреча произойдет в 5 м от начала отсчета – дерева, от которого начал движение пешеход.
Ясно, что координату места встречи можно было определить, подставив время tвстр = 5 с и в закон движения велосипедиста – уравнение (2):
xв = 20 - 3 · tвстр = 20 - 3 · 5 = 5 (м).
Естественно, мы получили то же самое значение хвстр, так как координаты пешехода и велосипедиста в момент встречи совпадают.
Итоги
При аналитическом решения задачи «встреча» момент встречи и координата места встречи определяются из равенства координат в законах движения тел, записанных в аналитическом виде
Источниками производственного ультразвука являются генераторы ультразвуковых колебаний, используемых для технологических нужд, в медицине и научных исследованиях, а также производственное оборудование, имеющее в спектре и шума высокочастотные складов.
Генератор ультразвука состоит из источника тока высокой частоты и пьезоэлектрического или магнитострикционного преобразователя В производственной практике магнитострикционные преобразователи используются для генерации низкочастотного ультразвука, а пьезоэлектрические преобразователи позволяют получать ультразвук с частотой до 10 * Гц.
Ультразвуковое оборудование и приборы зависимости от частотной характеристики делятся на две основные группы:
1) аппараты, генерирующие низкочастотный ультразвук с частотой колебаний 10-100кГц;
2) оборудование, в котором используется высокочастотный ультразвук с частотой колебаний в пределах 100 кГц - 1000 МГц
Низкочастотный ультразвук широко используется для очистки деталей от масел, окалины и других загрязнений, котлов и теплообменных аппаратов от накипи и т др.
Ультразвук широко используется в системах очистки воздуха от пыли, копоти, химических веществ Он активизирует химические процессы, используется для химической обработки сверхтвердых и хрупких материалов - алмазов, стекла, керамики, ювелирных изделий, древесины и т иін.
Ультразвук оказывает воздействие на биологические объекты назад, его бактерицидное действие успешно используется в медицинской и пищевой промышленности
Ультразвук как лечебное средство используется в физиотерапии творит болеутоляющее, противовоспалительное и бактерицидное действие, стимулирует действие нервной системы, улучшает кроветворение, усиливает защитные ре еакции организма, снижает артериальное давление и т ин.
высокочастотные ультразвуковые осуществляют дефектоскопию качества металлических и бетонных конструкций и других изделий, определяют дефекты сварных швов труб, котлов, строительных конструкций и т др.
Шаг 1. Мы ввели систему отсчета: 1) выбрали началом отсчета дерево, от которого начинал свое движение пешеход; 2) направили координатную ось вдоль дороги в направлении движения пешехода; 3) включили часы (секундомер) в момент начала движения тел.
Шаг 2. Были определены начальные координаты пешехода (xп0 = 0) и велосипедиста (xв0= 20 м).
Шаг 3. Используя введенную систему отсчета, мы определили значения скоростей движения пешехода (vп = 1 м/с) и велосипедиста (vв = -3 м/с).
Таким образом, первые три шага решения задачи не зависят от того, каким графическим или аналитическим) мы собираемся ее решать. Но уже следующий шаг будет отличаться от того, что мы делали при графическом решения.
Шаг 4 (аналитический). Запишем в аналитическом виде законы движения тел, учитывая известные данные. Поскольку в задаче движутся два тела (пешеход и велосипедист), то мы получаем два закона движения:
xп = 0 + 1 · t, xв = 20 - 3 · t.
Шаг 5 (аналитический). Представим в виде уравнения условие задачи – встречу велосипедиста и пешехода. Встреча двух тел означает, что положения тел в пространстве совпадут в некоторый момент времени t = tвстр, т. е. в этот момент времени совпадут их координаты
Объяснение:
Шаг 6 (аналитический). Запишем вместе полученные в шагах 4 и 5 выражения, присвоив каждому из них свои номер и название.
xп = 0 + 1 · t, (1) (закон движения пешехода)
xв = 20 - 3 · t, (2) (закон движения велосипедиста)
xп = xв. (3) (условие встречи пешехода и велосипедиста)
Шаг 7 (аналитический). Решение уравнений.
Для того чтобы найти значение времени t в интересующий нас момент встречи, воспользуемся условием встречи пешехода и велосипедиста – уравнением (3). Оно предполагает равенство координат двух тел. Подставим в него выражения для xп и xв из уравнений (1) и (2):
0 + 1 · t = 20 - 3 · t
Приведем подобные слагаемые и решим уравнение:
(1+3) · t = 20, t = 20/4 = 5 (с).
Таким образом, мы установили, что встреча пешехода и велосипедиста состоится через 5 с после начала движения.
Теперь определим координату точки, в которой состоится встреча. Для этого подставим полученное значение момента встречи tвстр = 5 с в закон движения пешехода – уравнение (1):
xп = 0 + 1 · tвстр = 0 + 1 · 5 = 5 (м).
Это означает, что в момент встречи координата пешехода будет равна xп = 5. Следовательно, встреча произойдет в 5 м от начала отсчета – дерева, от которого начал движение пешеход.
Ясно, что координату места встречи можно было определить, подставив время tвстр = 5 с и в закон движения велосипедиста – уравнение (2):
xв = 20 - 3 · tвстр = 20 - 3 · 5 = 5 (м).
Естественно, мы получили то же самое значение хвстр, так как координаты пешехода и велосипедиста в момент встречи совпадают.
Итоги
При аналитическом решения задачи «встреча» момент встречи и координата места встречи определяются из равенства координат в законах движения тел, записанных в аналитическом виде