При погружении в жидкость капилляра (узкой трубки) уровень жидкости, смачивающей стенки капилляра, выше, чем аналогичный уровень в широком сосуде. Причем уровень жидкости в капилляре тем выше, чем меньше радиус капилляра. При смачивании, например водой стеклянного капилляра (краевой угол смачивания θ<90°) образуется вогнутый мениск, жидкость в капилляре поднимается. Это явление называется капиллярным поднятием жидкости. Жидкость поднимается тем выше, чем меньше радиус капилляра. Поверхность жидкости имеет отрицательную кривизну, поэтому дополнительное давление Лапласа стремится растянуть жидкость (давление направлено к центру кривизны) и поднимает ее в капилляре.
При несмачивании, например ртутью стеклянного капилляра (θ>90°), образуется выпуклый мениск, уровень жидкости в капилляре опускается. Это явление называется капиллярной депрессией. Жидкость опускается тем ниже, чем меньше радиус капилляра. Кривизна поверхности жидкости будет положительной, дополнительное давление Лапласа направлено внутрь жидкости (жидкость будет сжиматься), в результате чего жидкость в капилляре опускается.
Высота поднятия (понижения) уровня жидкости в капилляре:
h = 2σcosθ/((ρ-ρ₀)gR), где σ - коэффициент поверхностного натяжения искривленной поверхности, разделяющей жидкую и газообразную фазы, R - радиус капилляра, θ - краевой угол смачивания, ρ - плотность жидкости, ρ₀ - плотность газа, п - ускорение свободного падения 9,81 м/с² Это выражение носит название уравнения Жюрена
ЗАКОН АРХИМЕДА — закон статики жидкостей и газов, согласно которому на погруженное в жидкость (или газ) тело действует выталкивающая сила, равная весу жидкости в объеме тела.
Если тело произвольной формы занимает внутри жидкости объем V, то действие жидкости на тело полностью определяется давлением, распределенным по поверхности тела, причем заметим, что это давление совершенно не зависит от материала тела — ("жидкости все равно на что давить").
Для определения результирующей силы давления на поверхность тела нужно мысленно удалить из объема V данное тело и заполнить (мысленно) этот объем той же жидкостью. С одной стороны, есть сосуд с жидкостью, находящейся в покое, с другой стороны внутри объема V — тело, состоящее из данной жидкости, причем это тело находится в равновесии под действием собственного веса (жидкость тяжелая) и давления жидкости на поверхность объема V. Так как вес жидкости в объеме тела равен pgV и уравновешивается равнодействующей сил давления, то величина ее равна весу жидкости в объеме V, т. е. pgV.
При смачивании, например водой стеклянного капилляра (краевой угол смачивания θ<90°) образуется вогнутый мениск, жидкость в капилляре поднимается. Это явление называется капиллярным поднятием жидкости. Жидкость поднимается тем выше, чем меньше радиус капилляра. Поверхность жидкости имеет отрицательную кривизну, поэтому дополнительное давление Лапласа стремится растянуть жидкость (давление направлено к центру кривизны) и поднимает ее в капилляре.
При несмачивании, например ртутью стеклянного капилляра (θ>90°), образуется выпуклый мениск, уровень жидкости в капилляре опускается. Это явление называется капиллярной депрессией. Жидкость опускается тем ниже, чем меньше радиус капилляра. Кривизна поверхности жидкости будет положительной, дополнительное давление Лапласа направлено внутрь жидкости (жидкость будет сжиматься), в результате чего жидкость в капилляре опускается.
Высота поднятия (понижения) уровня жидкости в капилляре:
h = 2σcosθ/((ρ-ρ₀)gR), где σ - коэффициент поверхностного натяжения искривленной поверхности, разделяющей жидкую и газообразную фазы, R - радиус капилляра, θ - краевой угол смачивания, ρ - плотность жидкости, ρ₀ - плотность газа, п - ускорение свободного падения 9,81 м/с²
Это выражение носит название уравнения Жюрена
Если тело произвольной формы занимает внутри жидкости объем V, то действие жидкости на тело полностью определяется давлением, распределенным по поверхности тела, причем заметим, что это давление совершенно не зависит от материала тела — ("жидкости все равно на что давить").
Для определения результирующей силы давления на поверхность тела нужно мысленно удалить из объема V данное тело и заполнить (мысленно) этот объем той же жидкостью. С одной стороны, есть сосуд с жидкостью, находящейся в покое, с другой стороны внутри объема V — тело, состоящее из данной жидкости, причем это тело находится в равновесии под действием собственного веса (жидкость тяжелая) и давления жидкости на поверхность объема V. Так как вес жидкости в объеме тела равен pgV и уравновешивается равнодействующей сил давления, то величина ее равна весу жидкости в объеме V, т. е. pgV.