R₁ = 259.8 H; R₂ = 150 H
Объяснение:
Будем считать, угол между левой и правой опорными плоскостями равен 90°.
G = 300H
R₁ - ? - реакция правой опорной плоскости (направлена перпендикулярно этой плоскости по её внешней нормали)
R₂ - ? - реакция левой опорной плоскости (направлена перпендикулярно этой плоскости по её внешней нормали)
Очевидно, что R₁ ⊥ R₂
Проецируем систему сил на направление R₁
R₁ - G · cos 30° = 0
R₁ = G · cos 30° = 300 · 0.866 = 259.8 (H)
Проецируем систему сил на направление R₂
R₂ - G · sin 30° = 0
R₂ = G · sin 30° = 300 · 0.5 = 150 (H)
U^2=P*R, U=√(Р*R).
1) U1=√(1,2*30)=√36=6 (В) - напряжение на R1.
I=U/R - по закону Ома. Отсюда
2) I1=6/30=0,2 (А) - ток через R1.
Т.к. ток в последовательной цепи (из R1 и R2) является constanta, то
3) I2=I1=0,2 (A) - ток через R2.
U=I*R - из закона Ома. Тогда
4) U2=0,2*90=18 (В) - напряжение на R2.
Напряжения в последовательной цепи складываются. Отсюда
5) Uобщ.=U1+U2=6+18=24 (В) - на участке цепи из R1 и R2.
ответ: Общее напряжение на участке цепи 24 В; на участке R1 - 6 В, на участке R2 - 18 В.
R₁ = 259.8 H; R₂ = 150 H
Объяснение:
Будем считать, угол между левой и правой опорными плоскостями равен 90°.
G = 300H
R₁ - ? - реакция правой опорной плоскости (направлена перпендикулярно этой плоскости по её внешней нормали)
R₂ - ? - реакция левой опорной плоскости (направлена перпендикулярно этой плоскости по её внешней нормали)
Очевидно, что R₁ ⊥ R₂
Проецируем систему сил на направление R₁
R₁ - G · cos 30° = 0
R₁ = G · cos 30° = 300 · 0.866 = 259.8 (H)
Проецируем систему сил на направление R₂
R₂ - G · sin 30° = 0
R₂ = G · sin 30° = 300 · 0.5 = 150 (H)