Со станции вышел товарный поезд, идущий со скоростью 36 км/ч. Через 1,5 ч в том же направлении отправился скорый поезд, скорость которого 108 км/ч. Через какое время после выхода товарного поезда его догонит скорый поезд?
Обозначим угол наклона как x. Разложим силу тяжести на нормальную N (прижимает тело к поверхности) и тангенциальную T (толкает тело вдоль поверхности) составляющие. N=mg cos(x); T=mg sin(x); Сила трения скольжения равна f=kN, где k - коэффициент трения. Если тело движется без ускорение, значит сумма сил, действующих на него, равна нулю. Нас интересуют только силы, направленные вдоль поверхности. mg*sin(x)-kmg*cos(x)=0; разделим уравнение на mg*cos(x); sin(x)/cos(x)-k=0; tg(x)=k; x=arctg(k); x=arctg(0.7); x=0.6107 рад. x=35 градусов (округлённо)
S = 1500 м
V11 = 36 км/ч = 10 м/с
V12 = 27 км/ч = 7,5 м/с
V21 = 7,5 м/с
V22 = 10 м/с
Δt - ?
ПЕРВЫЙ велосипедист:
t1 = S / (2*V11) = 1500 / (2*10) = 75 c
t2 = S / (2*V12) = 1500 / (2*7,5) = 100 c
Общее время
t = t1 + t2 = 75 + 100 = 175 c
ВТОРОЙ велосипедист:
Пусть to - полное время второго велосипедиста
to / 2 - половина времени
Тогда
S1 = V21*to / 2
S2 = V22*to /2
S = S1 + S2 = (V21 + V22)*to / 2
to = 2*S / (V21 + V22) = 2*1500 / (7,5 + 10) = 3000 / 17,5 ≈ 171 c
Второй велосипедист БЫСТРЕЕ на 4 секунды (175 - 171)
Разложим силу тяжести на нормальную N (прижимает тело к поверхности) и тангенциальную T (толкает тело вдоль поверхности) составляющие.
N=mg cos(x);
T=mg sin(x);
Сила трения скольжения равна f=kN, где k - коэффициент трения.
Если тело движется без ускорение, значит сумма сил, действующих на него, равна нулю. Нас интересуют только силы, направленные вдоль поверхности.
mg*sin(x)-kmg*cos(x)=0; разделим уравнение на mg*cos(x);
sin(x)/cos(x)-k=0;
tg(x)=k;
x=arctg(k);
x=arctg(0.7);
x=0.6107 рад.
x=35 градусов (округлённо)