Решите задачу 4.Галилей изучая законы свободного падения бросал без начальной скорости разные предметы с наклонной башни, высота которой 60 м. Сколько времени падали предметы с башни и какова их скорость при ударе о землю?
Запишем формулу кинетической энергии в малекулярной физике . Нам неизвестна температура, её мы выражаем из уравнения Менделеева-Клайперона ⇒ из данной формулы выражаем температуру ⇒ подставив данную формулу в формулу кинетической энергии
R - универсальная газовая постоянная = 8,31 Дж/моль*К.
Первое тело находится в начале отсчета. хо=0; его скорость 11,5 м/с вдоль оси координат.
Второе тело находится в точке с координатой 800 м и движется со скоростью (-1) м/с. Значит против оси координат, навстречу первому.
В начале наблюдения за телами (t=0) между телами было 800 м, но каждую секунду это расстояние уменьшается на (V1x - V2x)=
11,5 - (-1)=12,5 м/с
Тогда расстояние между ними S(t)=800 - 12,5*t
Это зависимость расстояния от времени. Цель задачи составить эту функцию. Теперь можно узнать расстояние между телами в любое время. И до встречи и после!
Через 10 с S(10)=800 - 12,5*10=800 - 125=675 м - это ответ.
Через минуту S(60)=800 - 12,5 * 60=50 м. Скоро встретятся. 50 м осталось.
Через 70 с S(70)=800 - 12,5 * 70=-75 м. Значит тела уже встретились и начинают удалятся друг от друга.
Запишем формулу кинетической энергии в малекулярной физике . Нам неизвестна температура, её мы выражаем из уравнения Менделеева-Клайперона ⇒ из данной формулы выражаем температуру ⇒ подставив данную формулу в формулу кинетической энергии
R - универсальная газовая постоянная = 8,31 Дж/моль*К.
k - постоянная Больцмана = 1,38*10⁻²³ Дж/К.
V - объём = 1 м³.
p - давление = 1,5*10⁵ Па.
N - число малекул = 2*10²⁵.
Na - число авагадро = 6*10²³ моль₋₁
Подставляем численные данные и вычисляем ⇒
Джоуль.
ответ: Дж.
Оба тела движутся равномерно.
х(t)=xo + Vx*t
x1=0 + 11,5 * t
x2=800 - 1 * t
Первое тело находится в начале отсчета. хо=0; его скорость 11,5 м/с вдоль оси координат.
Второе тело находится в точке с координатой 800 м и движется со скоростью (-1) м/с. Значит против оси координат, навстречу первому.
В начале наблюдения за телами (t=0) между телами было 800 м, но каждую секунду это расстояние уменьшается на (V1x - V2x)=
11,5 - (-1)=12,5 м/с
Тогда расстояние между ними S(t)=800 - 12,5*t
Это зависимость расстояния от времени. Цель задачи составить эту функцию. Теперь можно узнать расстояние между телами в любое время. И до встречи и после!
Через 10 с S(10)=800 - 12,5*10=800 - 125=675 м - это ответ.
Через минуту S(60)=800 - 12,5 * 60=50 м. Скоро встретятся. 50 м осталось.
Через 70 с S(70)=800 - 12,5 * 70=-75 м. Значит тела уже встретились и начинают удалятся друг от друга.