В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
KaterinaaA2003
KaterinaaA2003
15.10.2020 14:01 •  Физика

Решить любые 5 3 обязательно буду это

Показать ответ
Ответ:
ник5045
ник5045
28.04.2021 18:00

Для описания этих изменений вводят функцию состояния - внутреннюю энергию U и две функции перехода - теплоту Q и работу A. Математическая формулировка первого закона:

dU = Q - A (дифференциальная форма) (2.1)

U = Q - A (интегральная форма) (2.2)

Буква в уравнении (2.1) отражает тот факт, что Q и A - функции перехода и их бесконечно малое изменение не является полным дифференциалом.

В уравнениях (2.1) и (2.2) знаки теплоты и работы выбраны следующим образом. Теплота считается положительной, если она передается системе. Напротив, работа считается положительной, если она совершается системой над окружающей средой.

Существуют разные виды работы: механическая, электрическая, магнитная, поверхностная и др. Бесконечно малую работу любого вида можно представить как произведение обобщенной силы на приращение обобщенной координаты, например:

Aмех = p. dV; Aэл = . dе; Aпов = . dW (2.3)

( - электрический потенциал, e - заряд, - поверхностное натяжение, W - площадь поверхности). С учетом (2.3), дифференциальное выражение первого закона можно представить в виде:

dU = Q - p. dV Aнемех (2.4)

В дальнейшем изложении немеханическими видами работы мы будем, по умолчанию, пренебрегать.

Механическую работу, производимую при расширении против внешнего давления pex, рассчитывают по формуле:

A = (2.5)

Если процесс расширения обратим, то внешнее давление отличается от давления системы (например, газа) на бесконечно малую величину: pex = pin - dp и в формулу (2.5) можно подставлять давление самой системы, которое определяется по уравнению состояния.

Проще всего рассчитывать работу, совершаемую идеальным газом, для которого известно уравнение состояния p = nRT / V (табл. 1).

Таблица 1. Работа идеального газа в некоторых процессах расширения V1 V2:

Процесс

A

Расширение в вакуум

0

Расширение против постоянного внешнего давления p

p (V2-V1)

Изотермическое обратимое расширение

nRT ln(V2/V1)

Адиабатическое обратимое расширение

nCV(T1-T2)

При обратимом процессе совершаемая работа максимальна.

Теплота может переходить в систему при нагревании. Для расчета теплоты используют понятие теплоемкости, которая определяется следующим образом:

C = (2.6)

Если нагревание происходит при постоянном объеме или давлении, то теплоемкость обозначают соответствующим нижним индексом:

CV = ; Cp = . (2.7)

Из определения (2.6) следует, что конечную теплоту, полученную системой при нагревании, можно рассчитать как интеграл:

Q = (2.8)

Теплоемкость - экспериментально измеряемая экстенсивная величина. В термодинамических таблицах приведены значения теплоемкости при 298 К и коэффициенты, описывающие ее зависимость от температуры. Для некоторых веществ теплоемкость можно также оценить теоретически методами статистической термодинамики (гл. 12). Так, при комнатной температуре для одноатомных идеальных газов мольная теплоемкость CV = 3/2 R, для двухатомных газов CV = 5/2 R.

Теплоемкость определяется через теплоту, переданную системе, однако ее можно связать и с изменением внутренней энергии. Так, при постоянном объеме механическая работа не совершается и теплота равна изменению внутренней энергии: QV = dU, поэтому

CV = . (2.9)

При постоянном давлении теплота равна изменению другой функции состояния, которую называют энтальпией:

Qp = dU + pdV = d (U+pV) = dH, (2.10)

где H = U+pV - энтальпия системы. Из (2.10) следует, что теплоемкость Cp определяет зависимость энтальпии от температуры.

Cp = . (2.11)

Из соотношения между внутренней энергией и энтальпией следует, что для моля идеального газа

Cp - CV = R. (2.12)

Внутреннюю энергию можно рассматривать, как функцию температуры и объема:

(2.13)

Для идеального газа экспериментально обнаружено, что внутренняя энергия не зависит от объема, , откуда можно получить калорическое уравнение состояния:

dU = CV dT,

(2.14)

В изотермических процессах с участием идеального газа внутренняя энергия не изменяется, и работа расширения происходит только за счет поглощаемой теплоты.

Возможен и совсем иной процесс. Если в течение процесса отсутствует теплообмен с окружающей средой ( Q = 0), то такой процесс называют адиабатическим. В адиабатическом процессе работа может совершаться только за счет убыли внутренней энергии. Работа обратимого адиабатического расширения идеального газа:

A = - U = nCV (T1-T2) (2.15)

(n - число молей, CV - мольная теплоемкость). Эту работу можно также выразить через начальные и конечные давление и объем:

A = (2.16)

где = Cp / CV.

При обратимом адиабатическом расширении идеального газа давление и объем связаны соотношением (уравнением адиабаты):

pV = const. (2.17)

В уравнении (2.17) важны два момента: во-первых, это уравнение процесса, а не уравнение состояния; во-вторых, оно справедливо только для обратимого адиабатического процесса. Это же уравнение можно записать в эквивалентном виде:

TV -1 = const, (2.18)

T p1- = const. (2.19)

Объяснение:

как смогла

0,0(0 оценок)
Ответ:
atapinalidia577
atapinalidia577
17.06.2021 23:04
На главную

Функциональное гемосканирование

Монография Функциональное гемосканирование

Краткий обзор метода

Методы световой микроскопии

Вода-источник жизни

Справиться с болезнью

Что мы едим

Здоровье детей

Красота и здоровье

В спортсменам

60 – это не старость

Химия и Жизнь

Информационная война

Что такое БАД

Препараты Кораллового клуба

Паразиты вокруг нас

Глисты

Простейшие

Бактерии

Грибы

Экология человека

Карта сайта

История микроскопии

Сегодня трудно представить себе научную деятельность человека без микроскопа. Микроскоп широко применяется в большинстве лабораторий медицины и биологии, геологии и материаловедения.

Полученные с микроскопа результаты необходимы при постановке точного диагноза, при контроле над ходом лечения. С использованием микроскопа происходит разработка и внедрение новых препаратов, делаются научные открытия.

Микроскоп - (от греческого mikros - малый и skopeo - смотрю), оптический прибор для получения увеличенного изображения мелких объектов и их деталей, не видимых невооруженным глазом.

Глаз человека различать детали объекта, отстоящие друг от друга не менее чем на 0,08 мм. С светового микроскопа можно видеть детали, расстояние между которыми составляет до 0,2 мкм. Электронный микроскоп позволяет получить разрешение до 0,1-0,01 нм.

Изобретение микроскопа, столь важного для всей науки прибора обусловлено, прежде всего, влиянием развития оптики. Некоторые оптические свойства изогнутых поверхностей были известны еще Евклиду (300 лет до н.э.) и Птоломею (127-151 гг.), однако их увеличительная не нашла практического применения. В связи с этим первые очки были изобретены Сальвинио дели Арлеати в Италии только в 1285 г. В 16 веке Леонардо да Винчи и Мауролико показали, что малые объекты лучше изучать с лупы.
0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота