Пучок рентгеновских лучей с длиной волны 21.4 пм падает на поликристаллический образец хлористого натрия. за образцом на расстоянии 10 см от него установлена фотопластинка, на которой наблюдается система дифракционных колец. радиус кольца, соответствующего максимуму второго порядка равен 15.31 мм. определить плотность хлористого натрия, учитывая, что его кристаллическая ячейка имеет форму куба, в вершинах которого помещаются, чередуясь, ионы натрия и хлора. молярная масса молекулы хлористого натрия 58.5 г/моль.
ответ выразить в г/см3 и округлить до сотых.
ответ: 2.17
Запишем уравнение теплового баланса
Q1 + Q2 = Q3
где Q1 - количество теплоты поглощенное стальным чайником
Q2 - количество теплоты поглощенное водой
Q3 - количество теплоты отданное бруском
Тогда c1*m1 * (t2-t1) + c2*m2 * (t2-t1) = c3*m3 * (t3-t2)
Удельная теплоемкость стали 0,46 кДж/(кг*К), воды 4,18 кДж/(кг*К)
Тогда
0,46*1,2*(25-20) + 4,18*1,9*(25-20) = с3 * 0,65 (100-25)
Отсюда с3 = 0,87 кДж/(кг*К)
Данной удельная теплоемкость может соответствовать Глина у которой с = 0,88 кДж/(кг*К)
Согласно условию скорость зависит от угла поворота $v(\phi)=\frac{\phi}{2\pi}*V$
Нормально ускорение: $a_n=\frac{v^2}{R}$
а) $\phi=2\pi$ $a_n=\frac{V^2}{R}$
б) $\phi=\pi$ $v(\phi)=\frac{\pi}{2\pi}*V=\frac{V}{2}$ $a_n=\frac{V^2}{4R}$
в) $\phi=\frac{\pi}{2}$ $v(\phi)=\frac{\frac{pi}{2}}{2\pi}*V=\frac{V}{4}$
$a_n=\frac{V^2}{16R}$
г) $\phi=\frac{\pi}{3}$ $v(\phi)=\frac{\frac{pi}{3}}{2\pi}*V=\frac{V}{6}$
$a_n=\frac{V^2}{36R}$
д) $\phi=0$ $a_n=0$
Тангенциальное ускорение:
Поскольку ни период, ни время, ни частота оборотов в условии не заданы, определить тангенциальное ускорение в метрах за секунду в квадрате не представляется возможным. Ничего не остаётся, как привязать это ускорение к углу поворота, тогда у нас будут единицы м/(рад*с)
Тангенциальное ускорение $a_{tau}=\frac{V-0}{2\pi}=\frac{V}{2\pi}$
Оно будет постоянным для всего оборота $a_{tau}=\frac{V}{2*3,14}\approx 0,16V$
а) $\phi=2\pi$ $a_{tau}\approx 0,16V$
б) $\phi=\pi$ $a_{tau}\approx 0,16V$
в) $\phi=\frac{\pi}{2}$ $a_{tau}\approx 0,16V$
г) $\phi=\frac{\pi}{3}$ $a_{tau}\approx 0,16V$
д) $\phi=0$ $a_{tau}\approx 0,16V$
Полное ускорение: $a=\sqrt{a_n^2+a_{\tau}^2}$
а) $\phi=2\pi$ $a=\sqrt{(\frac{V^2}{R})^2+(0,16V)^2}$
б) $\phi=\pi$ $a=\sqrt{(\frac{V^2}{4R})^2+(0,16V)^2}$
в) $\phi=\frac{\pi}{2}$ $a=\sqrt{(\frac{V^2}{16R})^2+(0,16V)^2}$
г) $\phi=\frac{\pi}{3}$ $a=\sqrt{(\frac{V^2}{36R})^2+(0,16V)^2}$
д) $\phi=0$ $a=\sqrt{(0,16V)^2}=0,16V$