При охлаждении куска олова массой 84 г до температуры 28°c выделилось 9 кдж теплоты. определи, какой была температура олова до охлаждения. удельная теплоёмкость олова равна 250 дж/(кг·°c).
Когда говорят о скорости движения молекул, то имеют ввиду СРЕДНЮЮ скорость.
Значит, существуют молекулы со скоростями меньшими, чем средняя скорость и существуют молекулы со скоростями БОЛЬШИМИ средней скорости. Их то и называют "БЫСТРЫЕ МОЛЕКУЛЫ"
(Пример : Вы бежите кросс по пересеченной местности. Но в ГОРУ, скорее всего, Вы бежите с меньшей скоростью , чем под ГОРКУ. На соревнованиях учитывают длину трассы и время прохождения трассы. Вот если длину разделить на время, то получим СРЕДНЮЮ скорость на трассе)
Итак, что у нас происходит. Кусок льда, оказавшись в воде, сначала нагревается до температуры плавления, затем тает. При этом вода в сосуде охлаждается. Коль лед не весь растаял, есть основания полагать, что процесс завершился при температуре 0° С. Тогда вода в сосуде, при охлаждении отдает количество теплоты Q₁: (1) Тут: с₁ - удельная теплоемкость воды 4200 Дж/(кг·К) m₁ - масса воды 1 кг (1л - 1кг) T₀ - начальная температура воды 10°С T₁ - конечная температура воды и льда 0°С
Лед принял количество теплоты Q₂ : (2) Где: с₂ - удельная теплоемкость льда 2060 Дж/(кг·К) m₂ - начальная масса льда T₂ - начальная температура льда -20°С T₁ - конечная температура воды и льда 0°С m₃ - масса растаявшего льда. λ - удельная теплота плавления льда 334*10³ Дж/кг При этом: кг (3)
Составляем уравнение теплового баланса, приравниваем Q₁ и Q₂. При этом, согласно (3) выражаем m₃ через m₂ (4) Теперь из 4 выражаем m₂:
Значит, существуют молекулы со скоростями меньшими, чем средняя скорость и существуют молекулы со скоростями БОЛЬШИМИ средней скорости. Их то и называют "БЫСТРЫЕ МОЛЕКУЛЫ"
(Пример : Вы бежите кросс по пересеченной местности. Но в ГОРУ, скорее всего, Вы бежите с меньшей скоростью , чем под ГОРКУ. На соревнованиях учитывают длину трассы и время прохождения трассы. Вот если длину разделить на время, то получим СРЕДНЮЮ скорость на трассе)
Тогда вода в сосуде, при охлаждении отдает количество теплоты Q₁:
(1)
Тут:
с₁ - удельная теплоемкость воды 4200 Дж/(кг·К)
m₁ - масса воды 1 кг (1л - 1кг)
T₀ - начальная температура воды 10°С
T₁ - конечная температура воды и льда 0°С
Лед принял количество теплоты Q₂ :
(2)
Где:
с₂ - удельная теплоемкость льда 2060 Дж/(кг·К)
m₂ - начальная масса льда
T₂ - начальная температура льда -20°С
T₁ - конечная температура воды и льда 0°С
m₃ - масса растаявшего льда.
λ - удельная теплота плавления льда 334*10³ Дж/кг
При этом:
кг (3)
Составляем уравнение теплового баланса, приравниваем Q₁ и Q₂. При этом, согласно (3) выражаем m₃ через m₂
(4)
Теперь из 4 выражаем m₂:
(5)
Подставляя в (5) числовые значения, получаем:
кг
ответ: Исходная масса льда 0,201 кг=201 г.