Паровой молот мощностью 483 кВт получает от нагревателя за 1,3 час(-а) количество теплоты, равное 6767 МДж. Какое количество теплоты получает за это же время холодильник?
Писал-писал, нажал на кнопку – пропало. Что за лажа.
Ну ладно, напишу ещё раз. Слушай сюда.
1. Сначала найди максимальную высоту, на которую поднимется первый мяч. Это будет h0 = v0 ^2 / (2g) = подставил = 4,9 метра. Потом пишешь уравнения движения первого h1 и второго h2 мячей начиная от момента достижения первым наивысшей точки. Уравнения такие: h1 = h0 – gt^2/2; h2 = v0*t – gt^2/2. Поскольку мячи встретились, то h1 = h2. Решай это уравнение: h0 – gt^2/2 = v0*t – gt^2/2, отсюда h0 = V0 * t, узнаёшь t = h0 / v0 = 1/2 с – это время до встречи мячей. Осталась малость – подставил t в любое из двух уравнений движения, например первое, и получаешь profit: h1 = h0 – gt^2/2 = 4,9 – 0,25 * 4,9 = 0,75 * 4,9 = 3,75 метра.
2. По закону сохранения энергии: в начале задачи столб имеет потенциальную энергию Еп=mgh*1/2 (половина, потому что центр масс столба находится на половине высоты его верхушки, смекнул?). В конце задачи столб имеет кинетическую энергию Ек=1/2 * I * w^2, где I – момент инерции стержня I = 1/3 * m * h^2, w – угловая скорость столба в момент падения. Приравнял энергии, подставил момент инерции, сократил массу, выразил w = корень из ( 3 * g / h). Поскольку линейная скорость v = w * h, то подставил опять, и получил v = корень из ( 3 * g * h ) = корень из ( 3 * 9,81 * 5 ) = у меня получилось что-то типа 12 м/с.
Третью не знаю, мы ещё частицы не проходили. Там, говорят, квантовая механика какая-то. Учительнице привет, поцелуй её от меня. Если моё решение на проверку окажется неправильным, то дай мне знать, ладно?
Шаг 1. Мы ввели систему отсчета: 1) выбрали началом отсчета дерево, от которого начинал свое движение пешеход; 2) направили координатную ось вдоль дороги в направлении движения пешехода; 3) включили часы (секундомер) в момент начала движения тел.
Шаг 2. Были определены начальные координаты пешехода (xп0 = 0) и велосипедиста (xв0= 20 м).
Шаг 3. Используя введенную систему отсчета, мы определили значения скоростей движения пешехода (vп = 1 м/с) и велосипедиста (vв = -3 м/с).
Таким образом, первые три шага решения задачи не зависят от того, каким графическим или аналитическим) мы собираемся ее решать. Но уже следующий шаг будет отличаться от того, что мы делали при графическом решения.
Шаг 4 (аналитический). Запишем в аналитическом виде законы движения тел, учитывая известные данные. Поскольку в задаче движутся два тела (пешеход и велосипедист), то мы получаем два закона движения:
xп = 0 + 1 · t, xв = 20 - 3 · t.
Шаг 5 (аналитический). Представим в виде уравнения условие задачи – встречу велосипедиста и пешехода. Встреча двух тел означает, что положения тел в пространстве совпадут в некоторый момент времени t = tвстр, т. е. в этот момент времени совпадут их координаты
Объяснение:
Шаг 6 (аналитический). Запишем вместе полученные в шагах 4 и 5 выражения, присвоив каждому из них свои номер и название.
xп = xв. (3) (условие встречи пешехода и велосипедиста)
Шаг 7 (аналитический). Решение уравнений.
Для того чтобы найти значение времени t в интересующий нас момент встречи, воспользуемся условием встречи пешехода и велосипедиста – уравнением (3). Оно предполагает равенство координат двух тел. Подставим в него выражения для xп и xв из уравнений (1) и (2):
0 + 1 · t = 20 - 3 · t
Приведем подобные слагаемые и решим уравнение:
(1+3) · t = 20, t = 20/4 = 5 (с).
Таким образом, мы установили, что встреча пешехода и велосипедиста состоится через 5 с после начала движения.
Теперь определим координату точки, в которой состоится встреча. Для этого подставим полученное значение момента встречи tвстр = 5 с в закон движения пешехода – уравнение (1):
xп = 0 + 1 · tвстр = 0 + 1 · 5 = 5 (м).
Это означает, что в момент встречи координата пешехода будет равна xп = 5. Следовательно, встреча произойдет в 5 м от начала отсчета – дерева, от которого начал движение пешеход.
Ясно, что координату места встречи можно было определить, подставив время tвстр = 5 с и в закон движения велосипедиста – уравнение (2):
xв = 20 - 3 · tвстр = 20 - 3 · 5 = 5 (м).
Естественно, мы получили то же самое значение хвстр, так как координаты пешехода и велосипедиста в момент встречи совпадают.
Итоги
При аналитическом решения задачи «встреча» момент встречи и координата места встречи определяются из равенства координат в законах движения тел, записанных в аналитическом виде
Писал-писал, нажал на кнопку – пропало. Что за лажа.
Ну ладно, напишу ещё раз. Слушай сюда.
1. Сначала найди максимальную высоту, на которую поднимется первый мяч. Это будет h0 = v0 ^2 / (2g) = подставил = 4,9 метра. Потом пишешь уравнения движения первого h1 и второго h2 мячей начиная от момента достижения первым наивысшей точки. Уравнения такие: h1 = h0 – gt^2/2; h2 = v0*t – gt^2/2. Поскольку мячи встретились, то h1 = h2. Решай это уравнение: h0 – gt^2/2 = v0*t – gt^2/2, отсюда h0 = V0 * t, узнаёшь t = h0 / v0 = 1/2 с – это время до встречи мячей. Осталась малость – подставил t в любое из двух уравнений движения, например первое, и получаешь profit: h1 = h0 – gt^2/2 = 4,9 – 0,25 * 4,9 = 0,75 * 4,9 = 3,75 метра.
2. По закону сохранения энергии: в начале задачи столб имеет потенциальную энергию Еп=mgh*1/2 (половина, потому что центр масс столба находится на половине высоты его верхушки, смекнул?). В конце задачи столб имеет кинетическую энергию Ек=1/2 * I * w^2, где I – момент инерции стержня I = 1/3 * m * h^2, w – угловая скорость столба в момент падения. Приравнял энергии, подставил момент инерции, сократил массу, выразил w = корень из ( 3 * g / h). Поскольку линейная скорость v = w * h, то подставил опять, и получил v = корень из ( 3 * g * h ) = корень из ( 3 * 9,81 * 5 ) = у меня получилось что-то типа 12 м/с.
Третью не знаю, мы ещё частицы не проходили. Там, говорят, квантовая механика какая-то. Учительнице привет, поцелуй её от меня. Если моё решение на проверку окажется неправильным, то дай мне знать, ладно?
Шаг 1. Мы ввели систему отсчета: 1) выбрали началом отсчета дерево, от которого начинал свое движение пешеход; 2) направили координатную ось вдоль дороги в направлении движения пешехода; 3) включили часы (секундомер) в момент начала движения тел.
Шаг 2. Были определены начальные координаты пешехода (xп0 = 0) и велосипедиста (xв0= 20 м).
Шаг 3. Используя введенную систему отсчета, мы определили значения скоростей движения пешехода (vп = 1 м/с) и велосипедиста (vв = -3 м/с).
Таким образом, первые три шага решения задачи не зависят от того, каким графическим или аналитическим) мы собираемся ее решать. Но уже следующий шаг будет отличаться от того, что мы делали при графическом решения.
Шаг 4 (аналитический). Запишем в аналитическом виде законы движения тел, учитывая известные данные. Поскольку в задаче движутся два тела (пешеход и велосипедист), то мы получаем два закона движения:
xп = 0 + 1 · t, xв = 20 - 3 · t.
Шаг 5 (аналитический). Представим в виде уравнения условие задачи – встречу велосипедиста и пешехода. Встреча двух тел означает, что положения тел в пространстве совпадут в некоторый момент времени t = tвстр, т. е. в этот момент времени совпадут их координаты
Объяснение:
Шаг 6 (аналитический). Запишем вместе полученные в шагах 4 и 5 выражения, присвоив каждому из них свои номер и название.
xп = 0 + 1 · t, (1) (закон движения пешехода)
xв = 20 - 3 · t, (2) (закон движения велосипедиста)
xп = xв. (3) (условие встречи пешехода и велосипедиста)
Шаг 7 (аналитический). Решение уравнений.
Для того чтобы найти значение времени t в интересующий нас момент встречи, воспользуемся условием встречи пешехода и велосипедиста – уравнением (3). Оно предполагает равенство координат двух тел. Подставим в него выражения для xп и xв из уравнений (1) и (2):
0 + 1 · t = 20 - 3 · t
Приведем подобные слагаемые и решим уравнение:
(1+3) · t = 20, t = 20/4 = 5 (с).
Таким образом, мы установили, что встреча пешехода и велосипедиста состоится через 5 с после начала движения.
Теперь определим координату точки, в которой состоится встреча. Для этого подставим полученное значение момента встречи tвстр = 5 с в закон движения пешехода – уравнение (1):
xп = 0 + 1 · tвстр = 0 + 1 · 5 = 5 (м).
Это означает, что в момент встречи координата пешехода будет равна xп = 5. Следовательно, встреча произойдет в 5 м от начала отсчета – дерева, от которого начал движение пешеход.
Ясно, что координату места встречи можно было определить, подставив время tвстр = 5 с и в закон движения велосипедиста – уравнение (2):
xв = 20 - 3 · tвстр = 20 - 3 · 5 = 5 (м).
Естественно, мы получили то же самое значение хвстр, так как координаты пешехода и велосипедиста в момент встречи совпадают.
Итоги
При аналитическом решения задачи «встреча» момент встречи и координата места встречи определяются из равенства координат в законах движения тел, записанных в аналитическом виде