На лснованиии принципа Германа- Эйлера-Даламбера и еще там кого-то уже не помню, можно рассмотреть поезд как покоящийся (т. е. не подвижный) , если приложить к нему все внешние силы (это его вес - М*ж) и силы инерции - в данном случае - центробежной силы, которая рана Ф=М*С2 / Р, ж - ускорение свободного падения, т. е. 9,81 м/с2 где М - масса поезда, С - его скорость (С2 - скорость в квалрате) , Р - радиус кривизны траектории, в задаче - радиус по которому изогнулся мост. Тогда на мост действует сила М*ж + М * С2 / Р = 400 000 * 9,81 + 400 000 * (20*20) / 2000 = 3924000 + 80000 = 4004000 Н (ньютонов) = 4004 кН (килоньютона)
где М - масса поезда, С - его скорость (С2 - скорость в квалрате) , Р - радиус кривизны траектории, в задаче - радиус по которому изогнулся мост.
Тогда на мост действует сила М*ж + М * С2 / Р = 400 000 * 9,81 + 400 000 * (20*20) / 2000 = 3924000 + 80000 = 4004000 Н (ньютонов) = 4004 кН (килоньютона)
ответ: 41 м
Объяснение:
Дано:
h = 5 м
α = 30°
μ = 0,1
s - ?
Согласно ЗСЭ при движении санок по наклонной плоскости
mgh = ( mv² )/2 + Aтр.1
Где Aтр.1 - работа сил трения на наклонной плоскости
v - скорость тела у "подножия" наклонной плоскости
Поэтому
Атр.1 = Fтр.1L
Где L - длина наклонной плоскости
Атр.1 = μN1L
Т.к. N1 = mgcosα ( Докажите самостоятельно )
Тогда
Атр.1 = μmgcosαL
Возвращаюсь к начальному уравнению
Получим что
mgh = ( mv² )/2 + μmgcosαL (1)
Теперь перейдем к движению тела на горизонтальной плоскости
Согласно ЗСЭ
( mv² )/2 = Aтр.
( mv² )/2 = Fтр.s
Где Fтр. - сила трения на горизонтальном участке движения
Соответственно Fтр. = μmg ( Докажите самостоятельно )
Тогда
( mv² )/2 = μmgs
Подставим данное выражение в уравнение (1)
mgh = μmgs + μmgcosαL
Упростим
h = μ( s + cosαL )
sinα = h/L
Отсюда
L = h/sinα
Тогда
h = μ( s + ( hcosα )/sinα )
h = μ( s + hctgα )
s + hctgα = h/μ
s = h/μ - hctgα
s = h( 1/μ - ctgα )
s = 5( 1/0,1 - 1,73 ) ≈ 41 м