Предпочтительнее тот при использовании которого на подъём придётся затратить меньшее время. Пусть l м - длина эскалатора, тогда при использовании первого Антону придётся преодолеть расстояние 3l/4 м со скоростью 3-1=2 м/с. Отсюда время подъёма t1=(3l/4)/2=3l/8 с. При использовании второго Антон сначала пробежит вниз по эскалатору расстояние l/4 м со скоростью 3+1=4 м/с, на что уйдёт время t2=(l/4)/4=l/16 с. Затем Антон пробежит вверх по эскалатору расстояние l с той же скоростью 4 м/с, на что уйдёт время t3=l/4 с. Таким образом, при использовании второго время до подъёма составит t2+t3=l/16+l/4=5l/16 с. Так как 3l/8=6l/16>5l/16, то t1>t2+t3. Значит, предпочтительнее второй
В общем, нужно разместить ось OX, тело 1 будет двигаться вдоль этой оси. Предположим, тело 2 двигается против этой оси, тогда: m1v1-m2v2=(m2+m1)*v' 2-2*x=6*0.3 2x=2-1.8 2x=0.2 x=0.1. Раз нет минуса, значит, с направлением мы угадали, тело 2 двигалось против оси OX со скоростью 0.1 м/c
ответ: Импульс тела 1 до столкновения был равен p1=m1v1= 2кг*м/c Импульс тела 2 до столкновения был равен p2=m2v2=0.2кг*м/c Импульс тел после столкновения стал равен p'=(m1+m2)*v'= 0.3*6= 1.8 кг*м/c Вектор скорости тела 2 был антинаправлен вектору скорости тела 1. Тело 2 двигалось со скоростью 0.1 м/c
m1v1-m2v2=(m2+m1)*v'
2-2*x=6*0.3
2x=2-1.8
2x=0.2
x=0.1. Раз нет минуса, значит, с направлением мы угадали, тело 2 двигалось против оси OX со скоростью 0.1 м/c
ответ:
Импульс тела 1 до столкновения был равен p1=m1v1= 2кг*м/c
Импульс тела 2 до столкновения был равен p2=m2v2=0.2кг*м/c
Импульс тел после столкновения стал равен p'=(m1+m2)*v'= 0.3*6= 1.8 кг*м/c
Вектор скорости тела 2 был антинаправлен вектору скорости тела 1. Тело 2 двигалось со скоростью 0.1 м/c