Рисуете прямую горизонтальную линию. Это - земля, относительно которой будет в дальнейшем происходить наш выстрел из пушки.
Собственно, рисуете пушку (я, вот, в художественном плане бездарность и рисую прямоугольник).
СНАЧАЛА пушка покоилась. Ничего не происходило, импульс системы равен НУЛЮ.
ЗАТЕМ пушка выстрелила, и в движение пришла и пушка, и снаряд в ней. Значит, суммарный импульс системы после равен импульсам ПУШКИ и СНАРЯДА.
Причем необходимо помнить, что импульс - это ВЕКТОРНАЯ величина (т.к. p = mv, а v - это вектор). Значит, импульсы пушки и снаряда необходимо спроецировать.
И так, согласно закону сохранения импульса: импульс системы ДО равен импульсу системы ПОСЛЕ: p(до) = p(после).
Как мы уже выше сказали, импульс системы ДО выстрела равен нулю. Импульс системы ПОСЛЕ выстрела геометрически складывается из импульсов пушки и снаряда:
0 = M V + m u (над V и u стрелочки, так как это вектора)
Если мы направим какую-нибудь горизонтальную ось, то получим, что либо у пушки, либо у снаряда проекция будет отрицательна (так как пушка и снаряд двигаются в разные стороны).
На лснованиии принципа Германа- Эйлера-Даламбера и еще там кого-то уже не помню, можно рассмотреть поезд как покоящийся (т. е. не подвижный) , если приложить к нему все внешние силы (это его вес - М*ж) и силы инерции - в данном случае - центробежной силы, которая рана Ф=М*С2 / Р, ж - ускорение свободного падения, т. е. 9,81 м/с2 где М - масса поезда, С - его скорость (С2 - скорость в квалрате) , Р - радиус кривизны траектории, в задаче - радиус по которому изогнулся мост. Тогда на мост действует сила М*ж + М * С2 / Р = 400 000 * 9,81 + 400 000 * (20*20) / 2000 = 3924000 + 80000 = 4004000 Н (ньютонов) = 4004 кН (килоньютона)
Рисуете прямую горизонтальную линию. Это - земля, относительно которой будет в дальнейшем происходить наш выстрел из пушки.
Собственно, рисуете пушку (я, вот, в художественном плане бездарность и рисую прямоугольник).
СНАЧАЛА пушка покоилась. Ничего не происходило, импульс системы равен НУЛЮ.
ЗАТЕМ пушка выстрелила, и в движение пришла и пушка, и снаряд в ней. Значит, суммарный импульс системы после равен импульсам ПУШКИ и СНАРЯДА.
Причем необходимо помнить, что импульс - это ВЕКТОРНАЯ величина (т.к. p = mv, а v - это вектор). Значит, импульсы пушки и снаряда необходимо спроецировать.
И так, согласно закону сохранения импульса: импульс системы ДО равен импульсу системы ПОСЛЕ: p(до) = p(после).
Как мы уже выше сказали, импульс системы ДО выстрела равен нулю. Импульс системы ПОСЛЕ выстрела геометрически складывается из импульсов пушки и снаряда:
0 = M V + m u (над V и u стрелочки, так как это вектора)
Если мы направим какую-нибудь горизонтальную ось, то получим, что либо у пушки, либо у снаряда проекция будет отрицательна (так как пушка и снаряд двигаются в разные стороны).
Следовательно: m u = M V
V = (m u)/M = (25*400)/5000 = 2 м/c
где М - масса поезда, С - его скорость (С2 - скорость в квалрате) , Р - радиус кривизны траектории, в задаче - радиус по которому изогнулся мост.
Тогда на мост действует сила М*ж + М * С2 / Р = 400 000 * 9,81 + 400 000 * (20*20) / 2000 = 3924000 + 80000 = 4004000 Н (ньютонов) = 4004 кН (килоньютона)