В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Spanny99
Spanny99
03.05.2022 20:52 •  Физика

Не понимаю совсем! надо завтра уже сдавать! только, чтобы все было понятно! что сможете, решите

Показать ответ
Ответ:
mixa7132ozoc5l
mixa7132ozoc5l
24.12.2022 01:24

v = \sqrt{ \frac{2g}{ 1/h + 1/R_3 } } \approx 2  км/с .

v = \sqrt{2gh} \approx 2  км/с ;

Объяснение:

h = 206  км  = 206 \ 000  м – максимальная высота подъёма ;

R_3 = 6 \ 400  км  = 6 \ 400 \ 000  м – радиус Земли ;

g = 10  м/c² – ускорение свободного падения на поверхности ;

v = ?  – найти начальную скорость.

Далее в решении мы никак не будем учитывать вращение Земли, поскольку дело происходит на полюсе, где линейная скорость вращения поверхности земли относительно её центра пренебрежимо мала.

Потенциальная энергия гравитационного взаимодействия тел, когда её общее изменение необходимо учесть на расстояниях, отличающихся на величину, соизмеримую с радиусом Земли, описывается выражаением:

W_G = - \gamma \cdot \frac{Mm}{r}  ,  где  M  и  m  – большое и малое гравитирующие тела, а  r  – расстояние между ними.

Правильность такого расчёта легко проверить следующим образом. Пусть тела находятся на расстоянии  r_o  , а затем под действием гравитации приближаются на расстояние  ( r_o - \Delta r )  . Значит их потенциальная энергия уменьшится со значения  W_{Go} = - \gamma \cdot \frac{Mm}{r_o}  , до значения  W_{Gn} = - \gamma \cdot \frac{Mm}{ r_o - \Delta r }  . Падение потенциальной энергии таким образом (равное росту кинетической):

\Delta W_{G} = W_{Go} - W_{Gn} = [ - \gamma \cdot \frac{Mm}{r_o} ] - [ - \gamma \cdot \frac{Mm}{ r_o - \Delta r } ] =

= \gamma Mm ( \frac{1}{ r_o - \Delta r } - \frac{1}{r_o} ) = \gamma Mm \cdot \frac{ r_o - ( r_o - \Delta r ) }{ ( r_o - \Delta r ) r_o } \approx \gamma Mm \cdot \frac{ \Delta r }{ r_o^2 }  ;

(*)  \Delta W_{G} = \gamma Mm \cdot \frac{ \Delta r }{ r_o^2 }  ;

Но с другой стороны, падение потенциальной энергии равно работе гравитационного поля:

(**)  \Delta W_{G} = \Delta A_G = F_G \cdot \Delta r = ( \gamma \cdot \frac{Mm}{r_o^2} ) \cdot \Delta r  ;

Как легко видеть, выражения (*) и (**) – равны, что доказывает справедливость описания потенциальной энергии гравитационного взаимодействия выражением:

W_G = - \gamma \cdot \frac{Mm}{r}  ;

Общая механическая энергия (вместе с кинетической  E  ) в верхней точке будет такой же, какой была в нижней, за вычетом  A_{conp}  работы сил сопротивления среды (атмосферы):

W_{Go} + E_o - A_{conp} = W_{Gn} + E_n  ;

Поскольку сопротивление мы не учитываем (пренебрегаем), то уравнение принимает вид:

- \gamma \cdot \frac{Mm}{r_o} + \frac{mv^2}{2} = - \gamma \cdot \frac{Mm}{r_n} + 0  ;

Умножим на  \frac{2}{m}  :

v^2 = 2 \gamma \cdot \frac{M}{r_o} - 2 \gamma \cdot \frac{M}{r_n}  ;

v^2 = 2 \gamma M ( \frac{1}{r_o} - \frac{1}{r_n} ) = 2 \gamma M ( \frac{1}{ R_3 } - \frac{1}{ R_3 + h } ) =

= 2 R_3 \gamma \cdot \frac{M}{R_3^2} ( 1 - \frac{R_3}{ R_3 + h } ) = 2 g \cdot \frac{R_3 h}{ R_3 + h }  ;

v = \sqrt{ \frac{2g}{ 1/h + 1/R_3 } } \approx \sqrt{ 20 / ( \frac{1}{206 \ 000} + \frac{1}{ 6 \ 400 \ 000 } ) }  м/с  \approx 1998  м/с  \approx 1.998  км/с \approx 2  км/с .

Мы пренебрегли сопротивлением воздуха, так что вычислять так точно падение потенциальной энергии с учётом меняющегося  g  не имеет практического смысла. Можно посчитать то же самое и по более простому, приближённому алгоритму:

\frac{mv^2}{2} = mgh  ;

v^2 = 2gh  ;

v = \sqrt{2gh} \approx \sqrt{ 20 \cdot 206 \ 000 }  м/с  \approx 2030  м/с  \approx 2  км/с ;

*** Вообще, всё выглядит немного странно, тут подозрительно странным числом указана высота. К чему это 206? Возможно в исходном условии было:  h = 2 \cdot 10^3  км  = 2 \cdot 10^6  м.

Тогда бы верное решение получалось только первым

v = \sqrt{ \frac{2g}{ 1/h + 1/R_3 } } \approx \sqrt{ 20 / ( \frac{1}{2 \ 000 \ 000} + \frac{1}{ 6 \ 400 \ 000 } ) }  м/с  \approx 5520  м/с  \approx 5.52  км/с  \approx 5.5  км/с .

В упрощённом варианте подсчёта при этом была бы уже значительная ошибка:

v = \sqrt{2gh} \approx \sqrt{ 20 \cdot 2 \ 000 \ 000 }  м/с  \approx 6325  м/с  \approx 6.3  км/с .

0,0(0 оценок)
Ответ:
ричбич4
ричбич4
19.09.2021 04:04

Объяснение:

Дано:

ω₁ = 0,6   - массовая доля азота

M₁ = 28·10⁻³ кг/моль - молярная масса азота

ω₂ = 0,4     - массовая доля кислорода.

M₂ = 32·10⁻³ кг/моль - молярная масса кислорода

p = 100 кПа = 1·10⁵ Па

M = 29·10⁻³ кг/моль - молярная масса воздуха

p₁ - ?

p₂ - ?

Запишем уравнение Клапейрона-Менделеева для воздуха:

p·V = m·R·T / M

p =  m·R·T / (V·M)

Отсюда:

m·R·T/ V = p·M

m·R·T/ V = 1·10⁵· 29·10⁻³ = 2,9·10³ Па·кг/моль

Находим парциальные давления азота и кислорода:

p₁ = ω₁·m·R·T / (V·M₁) = (ω₁/M₁) ·m·R·T / V =

= 2,9·10³·0,6/(28·10⁻³)  ≈ 62 кПа

p₂ = ω₂·m·R·T / (V·M₂) = (ω₂/M₂) ·m·R·T / V =

=2,9·10³·0,4/(32·10⁻³)  ≈ 36 кПа

Проверим: 62 кПа + 36 кПа = 98 кПа ≈ 100 кПа

Расхождение в 2 кПа связано с тем, что в состав воздуха входят и другие газы.

0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота