На шарообразное тело массой 72 кг действует сила гравитации, равная 690 Н. На какой высоте над поверхностью Земли находится тело? Радиус Земли считать равным 6399542 м, масса Земли — 5,98⋅10^24 ответ (округли до целого числа):
Обозначим (см. рис.) силу натяжения нити в точке изгиба T0T0 (с обеих сторон эти силы равны, так как блок невесомый, и массой куска нити, касающегося блока, по сравнению с массой всей нити можно пренебречь). В силу того, что нить весомая и нерастяжимая, масса части нити длиной xx равна mн⋅x/lmн⋅x/l. Тогда можно записать уравнения движения кусков нити — вертикального, длины xx, и горизонтального, длины l−xl−x: mнgxl+T1−T0=mнaxlmнgxl+T1−T0=mнaxl, T0−T2=mнal−xlT0−T2=mнal−xl. Сложим эти уравнения и, учитывая, что T1=T2T1=T2, получим mн/l⋅xg=mн/l⋅a(x+l−x)mн/l⋅xg=mн/l⋅a(x+l−x), x=aglx=agl. (1) Ускорение aa одно и то же у всех частей системы. Мы записали систему сразу в скалярном виде, потому что в векторах она будет очень сложной. Теперь запишем уравнения движения грузов: T2=m2aT2=m2a, m1g−T1=m1am1g−T1=m1a. Учитывая, что T1=T2T1=T2, складываем и получаем, получим m1g=(m1+m2)am1g=(m1+m2)a, a=m1m1+m2ga=m1m1+m2g. (2) Тогда из (1) и (2) получаем x=m1m1+m2l=m2m/3+ml=35lx=m1m1+m2l=m2m/3+ml=35l. (3) Подставляя (3) в (1), получаем a=3g/5a=3g/5. (4) Отсюда для силы натяжения получаем T1=T2=m2a=2m335g=25mgT1=T2=m2a=2m335g=25mg. (5) Соотношения (3), (4), (5) дают решение задачи. Источник: https://earthz.ru/solves/Zadacha-po-fizike-4784
Обозначим (см. рис.) силу натяжения нити в точке изгиба T0T0 (с обеих сторон эти силы равны, так как блок невесомый, и массой куска нити, касающегося блока, по сравнению с массой всей нити можно пренебречь). В силу того, что нить весомая и нерастяжимая, масса части нити длиной xx равна mн⋅x/lmн⋅x/l. Тогда можно записать уравнения движения кусков нити — вертикального, длины xx, и горизонтального, длины l−xl−x: mнgxl+T1−T0=mнaxlmнgxl+T1−T0=mнaxl, T0−T2=mнal−xlT0−T2=mнal−xl. Сложим эти уравнения и, учитывая, что T1=T2T1=T2, получим mн/l⋅xg=mн/l⋅a(x+l−x)mн/l⋅xg=mн/l⋅a(x+l−x), x=aglx=agl. (1) Ускорение aa одно и то же у всех частей системы. Мы записали систему сразу в скалярном виде, потому что в векторах она будет очень сложной. Теперь запишем уравнения движения грузов: T2=m2aT2=m2a, m1g−T1=m1am1g−T1=m1a. Учитывая, что T1=T2T1=T2, складываем и получаем, получим m1g=(m1+m2)am1g=(m1+m2)a, a=m1m1+m2ga=m1m1+m2g. (2) Тогда из (1) и (2) получаем x=m1m1+m2l=m2m/3+ml=35lx=m1m1+m2l=m2m/3+ml=35l. (3) Подставляя (3) в (1), получаем a=3g/5a=3g/5. (4) Отсюда для силы натяжения получаем T1=T2=m2a=2m335g=25mgT1=T2=m2a=2m335g=25mg. (5) Соотношения (3), (4), (5) дают решение задачи. Источник: https://earthz.ru/solves/Zadacha-po-fizike-4784
Объяснение:
Відповідь:
1. N=5,3·10²²
2. n=9,4·10²⁵м⁻³
3. t =0,14c
Пояснення:
№1
N-? N=mNₐ/μ
m=0,003кг
μ(H₂S)=0,034кг/моль N=0,003·6,02·10²³/0,034=5,3·10²²
Nₐ=6,02·10²³моль⁻¹
№2
n-? n=N/V
V=6·10⁻³м³ N=mNₐ/μ
μ(O₂)=32·10⁻³кг/моль n=mNₐ/μV
m=3·10⁻²кг
Nₐ=6,02·10²³моль⁻¹ n=3·10⁻²·6,02·10²³/32·10⁻³·6·10⁻³=
0,94·10²⁶=9,4·10²⁵м⁻³
№3
t-? t=N/υ
m=0,1 кг N=mNₐ/μ
μ(H₂O)=18·10⁻³кг/моль t=mNₐ/μυ
Nₐ=6,02·10²³моль⁻¹
υ=2,5·10²⁵молекул/сек t=10⁻¹·6,02·10²³/18·10⁻³·2,5·10²⁵=0,14c