На коротком плече рычага подвешен груз массой m1=80 кг.Для подъёма этого груза к длинному плечу рычага приложили силу F=200 Н. Груз подняли на высоту h1=9 см, при этом точка приложения движущей силы опустилась на высоту h2=40 см. Найти КПД η рычага. ответ выразить в %, округлив до целых. Ускорение свободного падения считать равным 10 м/с²
Различают два вида рычагов. У рычага первого рода точка опоры находится между линиями действия приложенных сил. У рычага второго рода точка опоры расположена по одну сторону от них. То есть, если мы пытаемся при лома сдвинуть с места тяжелый предмет, то рычаг первого рода – это ситуация, когда мы подкладываем брусок под лом, надавливая на свободный конец лома вниз.
Система отсчета – совокупность системы координат и часов, связанных с телом, относительно которого изучается движение.
Движения тела, как и материи, вообще не может быть вне времени и пространства. Материя, пространство и время неразрывно связаны между собой (нет пространства без материи и времени, и наоборот).
Пространство трехмерно, поэтому «естественной» системой координат является декартова прямоугольная система координат, которой мы, в основном, и будем пользоваться.
В декартовой системе координат, используемой наиболее часто, положение точки А в данный момент времени по отношению к этой системе характеризуется тремя координатами x, y, z или радиус-вектором , проведенным из начала координат в данную точку (рис.2.1).
Рис. 2.1
При движении материальной точки её координаты с течением времени изменяются. В общем случае её движение определяется скалярными уравнениями:
x = x (t), y = y (t), z = z (t). (2.2.1)
Эти уравнения эквивалентны векторному уравнению
r = r(t) = x i + y j + z k (2.2.2)
где х, у, z – проекции радиус-вектора на оси координат; i, j, k – единичные векторы (орты), направленные по соответствующим осям.
Уравнения (2.2.1) и (2.2.2) называются кинематическими уравнениями движения материальной точки.
Число независимых координат, полностью определяющих положение точки в пространстве, называется числом степеней свободы.
Если материальная точка движется в пространстве, то она имеет три степени свободы (координаты х, у, z). Если она движется на плоскости – две степени свободы. Если вдоль линии – одна степень свободы.
Всякое движение тела можно разложить на два основных вида движения – поступательное и вращательное.
Объяснение:
из призентаций