Какой заряд должен приобрести металлический шар, чтобы его масса увеличилась на m=2,84⋅10−6 г? Масса одного электрона m0=9,11⋅10−31 кг (ответ округли до целого значения).
Ускорение точки есть производная от скорости по времени
или вторая производная от радиус-вектора по времени:
a = dv/dt = d2
r/dt
2
(1.3)
При решении задач кинематики уравнения (1.1) – (1.3) используются в скалярной форме. Чтобы осуществить такой перевод,
следует определить, какой из видов движения (прямолинейное,
криволинейное, вращательное) рассматривается в данной конкретной задаче. Рассмотрим особенности использования уравнений (1.1) – (1.3) для каждого на этих видов движения.
Прямолинейное движение. В этом случае координатную ось
целесообразно выбрать в направлении движения, а положение
точки характеризовать координатой х, равной расстоянию движущейся точки от начала отсчета. Кинематическое уравнение (1)
примет вид:
x = x (t) (1.4)
Мгновенная скорость
v = dx / dt (1.5)
Мгновенное ускорение
a = dv / dt = d2
x / dt
2
(1.6)
Уравнение равномерного движения
x = x0 + vt, (1.7)
или при x0 = 0 x = vt. (1.8)
Уравнение равнопеременного движения
x = x0 + v0t + at2
/2 (1.9)
где x0 – расстояние от движущейся точки до начала отсчета в момент времени t = 0, v0 – скорость точки в этот момент времени.
Скорость равнопеременного движения
v = v0 + at (1.10)
Исключая время из (1.9) и (1.10), можно получить:
2ax = v2
- v0
2
. (1.11)
Криволинейное движение. Для задания движения точки в
этом случае можно пользоваться двумя В одном из них
указывается траектория точки и уравнение движения точки по
кривой:
S = S ( t ) (1.12)
При этом мгновенная скорость выражается так же, как и в случае прямолинейного движения:
v = dS / dt, (1.13)
а направление мгновенной скорости в каждой точке траектории
совпадает с направлением касательной к траектории в этой же
точке.
Для нахождения мгновенного ускорения a его рассматривают
состоящим из двух составляющих:
тангенциального ускорения aτ, характеризующего изменение
скорости по модулю и направленного по касательной к траектории: aτ = dv / dt, (1.14)
нормального ускорения an, характеризующего изменение
скорости по направлению и направленного к центру кривизны
траектории an = v2 / R (1.15)
где R радиус кривизны траектории. Полное ускорение
a = an + aτ или a = √ an
2
+ aτ
2
. (1.16)
При другом описания криволинейного движения указываются уравнения движения точки, выражающие зависимость
координат точки от времени. В случае плоского движения достаточно указать два уравнения:
x = x (t), y = y (t) (1.17)
Уравнение траектории у = y(x) в этом случае находится исключением времени из уравнений (1.17). Проекции скорости
на оси координат
vx = dx / dt, vy = dy / dt. (1.18)
Полная скорость выражается через проекции соотношением:
v = √ vx
2
+ vy
2
. (1.19)
Проекции полного ускорения на оси координат
ax = dvx / dt = d2
x / dt
2
, ay = dvy / dt = d2y / dt
2
. (1.20)
Полное ускорение
a = √ ax
2
+ ay
2
. (1.21))
Вращательное движение вокруг неподвижной оси
Любая точка вращающегося тела описывает окружность в
плоскости, перпендикулярной оси вращения. Поворот радиусвектора точки за время t определяет угол поворота φ всего тела.
Зависимость φ от t называется кинематическим уравнением
враще-ния: φ = φ (t).
(1.22)
Мгновенная угловая скорость
ω = dφ / dt. (1.23)
Мгновенное угловое ускорение
ε = dω / dt = d2
φ / dt
2
. (1.24)
Уравнения равномерного вращения
φ = ωt; ω = const; ε = 0. (1.25)
Уравнения равнопеременного вращения
φ = ω0t + εt
2
/2. (1.26)
Угловая скорость равнопеременного вращения
ω = ω0 + εt. (1.27)
Исключив время из уравнений (1.26) и (1.27), можно получить:
2εφ = ω2
- ω0
2
. (1.28)
Следует отметить, что формулы (1.22)–(1.28) аналогичны формулам (1.4)–(1.11) для прямолинейного движения точки.
Связь между линейными и угловыми величинами выражается
формулами: длина пути (дуги), пройденного точкой,
S = φR, (1.29)
где φ – угол поворота тела; R – радиус вращения тoчки.
Линейная скорость точки v = ωR. (1.30)
Ускорения точки aτ = εR, (1.31)
an = ω2
R. (1.32)
Приведенные выше соотношения дают возможность по известному закону движения рассчитать и построить траекторию движения тела, найти скорость и ускорение. Если же известны ускорение или скорость как функции времени и начальные условия, то
Подъем аэростата с оболочкой из прорезиненной ткани или из пленочных материалов прекращается при равенстве плотностей поднимающейся системы и атмосферного воздуха. [1]
Перед подъемом аэростата в его гондолу был помещен термос с горячей водой. В конце подъема вода закипела; температура ее была равна при этом 65 С. [2]
Перед подъемом аэростата в его гондолу положили термос с горячей водой; к концу подъема температура воды была равна tK - - 65 C. На некоторой высоте Н, которую следует определить, вода в термосе закипела. [3]
Аналогично составляем уравнение при подъеме аэростата. [4]
Какие силы совершают работу по подъему аэростата. [5]
Аэростат поднимается вертикально вверх с некоторым ускорением. Когда скорость подъема аэростата была равна vt 10 м / с, из него выпал предмет. [6]
Аэростат поднимается вертикально вверх с некоторым ускорением. Когда скорость подъема аэростата была равна t ] 10 м / с, из него выпал предмет. [7]
Аэростат поднимается вертикально вверх о некоторым постоянным ускорением. Когда скорость подъема аэростата была равна г110м / с, из него выпал предмет. [8]
На аэростат действуют силы давления воздуха снизу и сверху, но первая больше второй, так как внизу у основания аэростата воздух сильнее сжат, чем вверху у вершины аэростата. Разность этих двух сил направлена вверх, и она совершает работу по подъему аэростата. Значит, аэростат поднимается за счет упругой энергии сжатого воздуха атмосферы. [9]
На аэростат действуют силы давления воздуха снизу и сверху, но первая больше второй, так как внизу, у основания аэростата, воздух сильнее сжат, чем вверху, у вершины аэростата. Разность этих двух сил направлена вверх, и она совершает работу по подъему аэростата. Значит, аэростат поднимается за счет упругой энергии сжатого воздуха атмосферы. [10]
Так как при невыполненном состоянии оболочка аэростата наполнена газом только частично, то последний при подъеме аэростата вверх может расширяться, не выходя при этом из аппендикса. Следовательно, полный вгс Qa наполняющего аэростат газа остается постоянным до тех пор, пока аэростат находится в невыполненном состоянии. [11]
Так как при невыполненном состоянии оболочка аэростата наполнена газом только частично, то последний при подъеме аэростата вверх может расширяться, не выходя при этом из аппендикса. Следовательно, полный вгс Qff наполняющего аэростат газа остается постоянным до тех пор, пока аэростат находится в невыполненном состоянии. [12]
Измерив промежуток времени между моментами посылки звука на землю и приема отражения его, он с достаточной точностью определил высоту подъема аэростата над землей. [13]
Відповідь:
Ускорение точки есть производная от скорости по времени
или вторая производная от радиус-вектора по времени:
a = dv/dt = d2
r/dt
2
(1.3)
При решении задач кинематики уравнения (1.1) – (1.3) используются в скалярной форме. Чтобы осуществить такой перевод,
следует определить, какой из видов движения (прямолинейное,
криволинейное, вращательное) рассматривается в данной конкретной задаче. Рассмотрим особенности использования уравнений (1.1) – (1.3) для каждого на этих видов движения.
Прямолинейное движение. В этом случае координатную ось
целесообразно выбрать в направлении движения, а положение
точки характеризовать координатой х, равной расстоянию движущейся точки от начала отсчета. Кинематическое уравнение (1)
примет вид:
x = x (t) (1.4)
Мгновенная скорость
v = dx / dt (1.5)
Мгновенное ускорение
a = dv / dt = d2
x / dt
2
(1.6)
Уравнение равномерного движения
x = x0 + vt, (1.7)
или при x0 = 0 x = vt. (1.8)
Уравнение равнопеременного движения
x = x0 + v0t + at2
/2 (1.9)
где x0 – расстояние от движущейся точки до начала отсчета в момент времени t = 0, v0 – скорость точки в этот момент времени.
Скорость равнопеременного движения
v = v0 + at (1.10)
Исключая время из (1.9) и (1.10), можно получить:
2ax = v2
- v0
2
. (1.11)
Криволинейное движение. Для задания движения точки в
этом случае можно пользоваться двумя В одном из них
указывается траектория точки и уравнение движения точки по
кривой:
S = S ( t ) (1.12)
При этом мгновенная скорость выражается так же, как и в случае прямолинейного движения:
v = dS / dt, (1.13)
а направление мгновенной скорости в каждой точке траектории
совпадает с направлением касательной к траектории в этой же
точке.
Для нахождения мгновенного ускорения a его рассматривают
состоящим из двух составляющих:
тангенциального ускорения aτ, характеризующего изменение
скорости по модулю и направленного по касательной к траектории: aτ = dv / dt, (1.14)
нормального ускорения an, характеризующего изменение
скорости по направлению и направленного к центру кривизны
траектории an = v2 / R (1.15)
где R радиус кривизны траектории. Полное ускорение
a = an + aτ или a = √ an
2
+ aτ
2
. (1.16)
При другом описания криволинейного движения указываются уравнения движения точки, выражающие зависимость
координат точки от времени. В случае плоского движения достаточно указать два уравнения:
x = x (t), y = y (t) (1.17)
Уравнение траектории у = y(x) в этом случае находится исключением времени из уравнений (1.17). Проекции скорости
на оси координат
vx = dx / dt, vy = dy / dt. (1.18)
Полная скорость выражается через проекции соотношением:
v = √ vx
2
+ vy
2
. (1.19)
Проекции полного ускорения на оси координат
ax = dvx / dt = d2
x / dt
2
, ay = dvy / dt = d2y / dt
2
. (1.20)
Полное ускорение
a = √ ax
2
+ ay
2
. (1.21))
Вращательное движение вокруг неподвижной оси
Любая точка вращающегося тела описывает окружность в
плоскости, перпендикулярной оси вращения. Поворот радиусвектора точки за время t определяет угол поворота φ всего тела.
Зависимость φ от t называется кинематическим уравнением
враще-ния: φ = φ (t).
(1.22)
Мгновенная угловая скорость
ω = dφ / dt. (1.23)
Мгновенное угловое ускорение
ε = dω / dt = d2
φ / dt
2
. (1.24)
Уравнения равномерного вращения
φ = ωt; ω = const; ε = 0. (1.25)
Уравнения равнопеременного вращения
φ = ω0t + εt
2
/2. (1.26)
Угловая скорость равнопеременного вращения
ω = ω0 + εt. (1.27)
Исключив время из уравнений (1.26) и (1.27), можно получить:
2εφ = ω2
- ω0
2
. (1.28)
Следует отметить, что формулы (1.22)–(1.28) аналогичны формулам (1.4)–(1.11) для прямолинейного движения точки.
Связь между линейными и угловыми величинами выражается
формулами: длина пути (дуги), пройденного точкой,
S = φR, (1.29)
где φ – угол поворота тела; R – радиус вращения тoчки.
Линейная скорость точки v = ωR. (1.30)
Ускорения точки aτ = εR, (1.31)
an = ω2
R. (1.32)
Приведенные выше соотношения дают возможность по известному закону движения рассчитать и построить траекторию движения тела, найти скорость и ускорение. Если же известны ускорение или скорость как функции времени и начальные условия, то
можно найти закон движения тела.
Пояснення:
Перед подъемом аэростата в его гондолу был помещен термос с горячей водой. В конце подъема вода закипела; температура ее была равна при этом 65 С. [2]
Перед подъемом аэростата в его гондолу положили термос с горячей водой; к концу подъема температура воды была равна tK - - 65 C. На некоторой высоте Н, которую следует определить, вода в термосе закипела. [3]
Аналогично составляем уравнение при подъеме аэростата. [4]
Какие силы совершают работу по подъему аэростата. [5]
Аэростат поднимается вертикально вверх с некоторым ускорением. Когда скорость подъема аэростата была равна vt 10 м / с, из него выпал предмет. [6]
Аэростат поднимается вертикально вверх с некоторым ускорением. Когда скорость подъема аэростата была равна t ] 10 м / с, из него выпал предмет. [7]
Аэростат поднимается вертикально вверх о некоторым постоянным ускорением. Когда скорость подъема аэростата была равна г110м / с, из него выпал предмет. [8]
На аэростат действуют силы давления воздуха снизу и сверху, но первая больше второй, так как внизу у основания аэростата воздух сильнее сжат, чем вверху у вершины аэростата. Разность этих двух сил направлена вверх, и она совершает работу по подъему аэростата. Значит, аэростат поднимается за счет упругой энергии сжатого воздуха атмосферы. [9]
На аэростат действуют силы давления воздуха снизу и сверху, но первая больше второй, так как внизу, у основания аэростата, воздух сильнее сжат, чем вверху, у вершины аэростата. Разность этих двух сил направлена вверх, и она совершает работу по подъему аэростата. Значит, аэростат поднимается за счет упругой энергии сжатого воздуха атмосферы. [10]
Так как при невыполненном состоянии оболочка аэростата наполнена газом только частично, то последний при подъеме аэростата вверх может расширяться, не выходя при этом из аппендикса. Следовательно, полный вгс Qa наполняющего аэростат газа остается постоянным до тех пор, пока аэростат находится в невыполненном состоянии. [11]
Так как при невыполненном состоянии оболочка аэростата наполнена газом только частично, то последний при подъеме аэростата вверх может расширяться, не выходя при этом из аппендикса. Следовательно, полный вгс Qff наполняющего аэростат газа остается постоянным до тех пор, пока аэростат находится в невыполненном состоянии. [12]
Измерив промежуток времени между моментами посылки звука на землю и приема отражения его, он с достаточной точностью определил высоту подъема аэростата над землей. [13]