Какие из сил ядерные или электрические (кулоновские) сильнее?
ядерные
электрические (кулоновские)
они одинаковые по силе
Энергия связи ядра это …
энергия, которая выделяется при расщеплении ядра на отдельные нуклоны
энергия, которая тратится на образование ядра
энергия, которая необходима для расщеплении ядра на отдельные нуклоны
Деление ядра возможно, так как …
масса покоя тяжелого ядра больше суммы масс покоя осколков, возникающих при делении
ядро обладает большой энергией
скорость ядра меньше скоростей осколков, возникающих при делении
Запись означает, что…
атом урана имеет 235 электронов и атомную массу
атом урана имеет 92 электронов и атомную массу
атом урана имеет 235 протонов и 92 электронов
Какие элементарные частицы испускаются ядром при его делении?
нуклоны
электроны
нейтроны
Определение 1 1-го закона термодинамики Первый закон термодинамики представляет собой некое обобщение закона сохранения и превращения энергии для термодинамической системы, и формулируется следующим образом: Δ U = Q − A ∆U=Q-A. Определение 1 Изменение Δ U ΔU внутренней энергии неизолированной термодинамической системы равно разности между количеством теплоты Q Q, переданной системе, и работой A A, совершенной системой над внешними телами. Формула первого закона термодинамики, зачастую записывается в ином виде: Q = Δ U + A Q=∆U+A. Определение 2 Количество теплоты, полученное системой, идет на изменение ее внутренней энергии и совершение работы над внешними телами. Первый закон термодинамики представляет из себя, по сути, обобщение опытных фактов. Если руководствоваться им, то можно заявить, что энергия не возникает и не исчезает бесследно, а передается от одной системы к другой, меняя свои формы. Невозможность создания вечного двигателя (perpetuum mobile) первого рода, то есть машины, которая может совершать полезную работу, не потребляя энергию извне и не претерпевая каких-либо изменений во внутренней конструкции агрегата, являлась важным следствием первого закона термодинамики. В подтверждение этого выступает тот факт, что каждая из огромного множества попыток создания такого устройства неизменно заканчивалась неудачей. Реальная машина может совершать положительную работу A A над внешними объектами, только получая некоторое количество теплоты Q Q от окружающих тел или уменьшая Δ U ΔU своей внутренней энергии. Первый закон термодинамики в процессах газов Первый закон термодинамики может применяться к изопроцессам в газах. Определение 3 В изохорном процессе, то есть в условиях неизменного объема ( V = c o n s t ) (V=const), газ не совершает работы, A = 0 A=0. В этом случае справедливой будет формула внутренней энергии газа: Q = Δ U = U ( T 2 ) − U ( T 1 ) Q=∆U=U(T2)-U(T1). В данном выражении U ( T 1 ) U(T1) и U ( T 2 ) U(T2) представляют внутренние энергии газа в начальном и конечном состояниях. Внутренняя энергия идеального газа зависит лишь от температуры, что исходит из закона Джоуля. При изохорном нагревании газ поглощает тепло ( Q > 0 ) (Q>0), чем провоцирует увеличение его внутренней энергии. В условиях охлаждения тепло отдается внешним объектам ( Q < 0 ) (Q<0). Определение 4 В изобарном процессе, предполагающем постоянность значения давления ( p = c o n s t ) (p=const), работа, совершаемая газом, выражается в виде соотношения: A = p ( V 2 − V 1 ) = p Δ V A=p(V2-V1)=p∆V. Первый закон термодинамики для изобарного процесса дает: Q = U ( T 2 ) − U ( T 1 ) + p ( V 2 − V 1 ) = Δ U + p Δ V Q=U(T2)-U(T1)+p(V2-V1)=∆U+p∆V. При изобарном расширении Q > 0 Q>0 тепло поглощается газом, и он совершает положительную работу. При изобарном сжатии Q < 0 Q<0 тепло переходит внешним телам. В таком случае A < 0 A<0. При изобарном сжатии уменьшаются температура газа T 2 < T 1 T2
Объяснение:
Читаем учебник физики:
"Внутреннюю энергию тела можно изменить двумя : совершая механическую работу или сообщив ему некоторое количество теплоты"
ΔU = A' + Q
Но нас чаще всего интересует не работа, совершенная над телом A', а работа, которую совершает само тело A.
По закону сохранения энергии:
A' = - A
Тогда:
ΔU = - A + Q
или:
Q = ΔU + A - первое начало термодинамики!
Объяснение:
бмен веществ в организме можно определить как совокупность всех химических превращений, которым подвергаются соединения, поступающие извне. Эти превращения включают все известные виды химических реакций: межмолекулярный перенос функциональных групп, гидролитическое и негидролитическое расщепления химических связей, внутримолекулярная перестройка, новообразование химических связей и окислительно - восстановительные реакции. Такие реакции протекают в организме с чрезвычайно большой скоростью только в присутствии катализаторов. Все биологические катализаторы представляют собой вещества белковой природы и носят названия ферменты (далее Ф) или энзимы (Е).
Ферменты не являются компонентами реакций, а лишь ускоряют достижение равновесия увеличивая скорость как прямого, так и обратного превращения. Ускорение реакции происходит за счет снижении энергии активации – того энергетического барьера, который отделяет одно состояние системы (исходное химическое соединение) от другого (продукт реакции).
Ферменты ускоряют самые различные реакции в организме. Так достаточно простая с точки зрения традиционной химии реакция отщепления воды от угольной кислоты с образованием СО2 требует участия фермента, т.к. без него она протекает слишком медленно для регулирования рН крови. Благодаря каталитическому действию ферментов в организме становится возможным протекание таких реакций, которые без катализатора шли бы в сотни и тысячи раз медленнее.
Свойства ферментов
1. Влияние на скорость химической реакции: ферменты увеличивают скорость химической реакции, но сами при этом не расходуются.
Скорость реакции – это изменение концентрации компонентов реакции в единицу времени. Если она идет в прямом направлении, то пропорциональна концентрации реагирующих веществ, если в обратном – то пропорциональна концентрации продуктов реакции. Отношение скоростей прямой и обратной реакций называется константой равновесия. Ферменты не могут изменять величины константы равновесия, но состояние равновесия в присутствии ферментов наступает быстрее.
2. Специфичность действия ферментов. В клетках организма протекает 2-3 тыс. реакций, каждая из которые катализирутся определенным ферментом. Специфичность действия фермента – это ускорять протекание одной определенной реакции, не влияя на скорость остальных, даже очень похожих.
Различают:
Абсолютную – когда Ф катализирует только одну определенную реакцию (аргиназа – расщепление аргинина)
Относительную (групповую спец) – Ф катализирует определенный класс реакций (напр. гидролитическое расщепление) или реакции при участии определенного класса веществ.
Специфичность ферментов обусловлена их уникальной аминокислотной последовательностью, от которой зависит конформация активного центра, взаимодействующего с компонентами реакции.
Вещество, химическое превращение которого катализируется ферментом носит название субстрат (S).
3. Активность ферментов в разной степени ускорять скорость реакции. Активность выражают в:
1) Международных единицах активности – (МЕ) количество фермента, катализирующего превращение 1 мкМ субстрата за 1 мин.
2) Каталах (кат) – количество катализатора (фермента превращать 1 моль субстрата за 1 с.
3) Удельной активности – число единиц активности (любых из вышеперечисленных) в исследуемом образце к общей массе белка в этом образце.
4) Реже используют молярную активность – количество молекул субстрата превращенных одной молекулой фермента за минуту.
Активность зависит в первую очередь от температуры. Наибольшую активность тот или иной фермент проявляет при оптимальной температуре. Для Ф живого организма это значение находится в пределах +37,0 - +39,0 °С, в зависимости от вида животного. При понижении температуры, замедляется броуновское движение, уменьшается скорость диффузии и, следовательно, замедляется процесс образования комплекса между ферментом и компонентами реакции (субстратами). В случае повышения температуры выше +40 - +50 °С молекула фермента, которая является белком, подвергается процессу денатурации. При этом скорость химической реакции заметно падает (рис. 4.3.1.).